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Abstract

This study investigates the effects of a sinusoidally varying temperature
distribution and rotation on free convection between two rigid plates. The domain
is assumed to be much larger in the horizontal direction than in the vertical
direction, which naturally introduces a small parameter. An approximate analytical
solution for the steady-state flow is derived by expanding the flow variables in
the small parameter. The steady-state solution was also determined numerically
using the commercial CFD software package CFX. A comparison of the results
shows that the form of the steady-state flow pattern is indeed captured by the
approximate analytical solution. Unsteady numerical calculations are also carried
out for various sets of parameters to determine when the flow destabilizes, how the
modulated temperature boundary condition and rotation affect the critical Rayleigh
number, and also to illustrate the flow pattern that develops when the flow becomes
unstable.
Keywords: Bénard convection, rotation, sinusoidally varying boundary condition,
shallow flow, analytical, numerical.

1 Introduction

The problem of free convection within a long, rotating rectangular domain driven
by a sinusoidally varying bottom temperature is studied. This problem is an
extension of traditional Bénard convection to account for both rotation and a
periodic temperature distribution along the bottom plate. Numerous studies have
been devoted to Bénard convection. One previous related study is the work by
Pascal and D’Alessio [1], which addresses the stability of the flow with rotation
and a quadratic equation of state. Schmitz and Zimmerman [2] studied the effects
of a spatially varying temperature condition together with wavy boundaries, but
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without rotation. They also simplified their governing equations by assuming a
very large Prandtl number. The current work, on the other hand, takes advantage
of the thinness of the fluid layer to simplify the governing equations. Other related
work includes that of Malashetty and Swamy [3], who consider the effects of
rotation and a temperature boundary condition which varies with time, and that of
Basak et al. [4], who study the flow resulting from a spatially varying temperature
boundary condition in a square cavity without rotation.

One goal of this research is to compare the steady and unsteady flows to that
of traditional Bénard convection (henceforth referred to as the basic case) so as to
assess the combined impact of rotation and a periodic temperature condition on
the stability of the flow. Another objective is to contrast the approximate analytical
steady-state solution with a fully numerical solution obtained from a commercial
CFD software package.

2 Governing equations

The two-dimensional flow is confined to a thin rectangular domain shown in
figure 1. The domain is allowed to rotate about the z-axis and the flow is assumed
to be uniform in the x-direction.

The governing equations are given by

�∇ · �v = 0 , (1)

∂�v

∂t
+

(
�v · �∇

)
�v + fk̂ × �v =

−1
ρ0

�∇p− ρ

ρ0
gk̂ + ν∇2�v , (2)

∂T

∂t
+

(
�v · �∇

)
T = κ∇2T , (3)

where �v = (u, v, w) is the velocity, T is the temperature, �Ω = (f/2)k̂ is the rate
of rotation, �g = −gk̂ is the acceleration due to gravity, and the density, ρ, is taken

Figure 1: The coordinate system and flow configuration.
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to vary with temperature according to

ρ = ρ0 (1 − α [T − T0]) , (4)

with α denoting the thermal expansion coefficient and ρ0, T0 representing
reference values for density and temperature. The remaining fluid properties ν, κ
refer to the kinematic viscosity and thermal diffusivity, respectively.

Since the flow is assumed to be uniform in the x-direction, the continuity
equation permits a stream function, ψ, to be defined such that

v =
∂ψ

∂z
and w = −∂ψ

∂y
. (5)

The system of equations (1)-(5) can be expressed in terms of the stream function
and the x-component of vorticity, ζ, as follows

ζ = −
(
∂2ψ

∂y2
+
∂2ψ

∂z2

)
, (6)

∂ζ

∂t
+

∂

∂y

(
−∂ψ
∂z

∂2ψ

∂y2
+
∂ψ

∂y

∂2ψ

∂y∂z

)
− ∂

∂z

(
∂ψ

∂z

∂2ψ

∂y∂z
− ∂ψ

∂y

∂2ψ

∂z2

)

− f
∂u

∂z
= αg

∂T

∂y
+ ν

(
∂2ζ

∂y2
+
∂2ζ

∂z2

)
, (7)

∂u

∂t
+
∂ψ

∂z

∂u

∂y
− ∂ψ

∂y

∂u

∂z
− f

∂ψ

∂z
= ν

(
∂2u

∂y2
+
∂2u

∂z2

)
, (8)

∂T

∂t
+
∂ψ

∂z

∂T

∂y
− ∂ψ

∂y

∂T

∂z
= κ

(
∂2T

∂y2
+
∂2T

∂z2

)
. (9)

These equations are to be solved in the rectangular region spanning one
wavelength in the y-direction subject to the no-slip and prescribed temperature
conditions given by

u = v = w = 0 at z = 0, H and y = 0, λ , (10)

T = T0 − ∆T cos
(
2π
y

λ

)
at z = 0 , T = T0 −∆T at z = H , y = 0, λ. (11)

The corresponding boundary conditions for ψ become

ψ =
∂ψ

∂z
= 0 at z = 0, H and ψ =

∂ψ

∂y
= 0 at y = 0, λ . (12)

It is noted that the vorticity lacks conditions. This can be resolved by utilizing
the over-specified conditions for ψ and applying Green’s Second Identity∫

V

(
φ∇2χ− χ∇2φ)

dV =
∫
S

(
φ
∂χ

∂n
− χ

∂φ

∂n

)
dS , (13)

where φ and χ denote arbitrary differentiable functions, ∂
∂n is the normal

derivative, and S is the surface enclosing the volume V . Choosing φ to satisfy
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∇2φ = 0 and letting χ ≡ ψ, then ∇2χ = ∇2ψ = −ζ. Also, applying the
boundary conditions ∂ψ

∂n = ψ = 0 on S, the above leads to integral constraints
for the vorticity given by ∫ H

0

∫ λ

0

φnζdydz = 0 , (14)

where

φn(y, z) = e±2nπz
{

sin(2nπy)
cos(2nπy)

}
for n = 1, 2, 3, · · · . (15)

2.1 Non-dimensionalization

The governing equations and associated conditions are non-dimensionalized using
the following scaling

t→ H2

κ
t , y → λy , z → Hz , ψ → κψ , ζ → κ

H2
ζ ,

T → (T0 − ∆T ) + ∆TT , u→ κ

H
u . (16)

This introduces the non-dimensional parameters

Ra =
αgH3∆T

νκ
, Ro =

κ

Hfλ
, Pr =

ν

κ
, δ =

H

λ
. (17)

Cast in dimensionless form, the equations now become

∂ζ

∂t
− δ

∂

∂z

(
∂ψ

∂z

∂2ψ

∂y∂z
− ∂ψ

∂y

∂2ψ

∂z2

)
+ δ3

∂

∂y

(
−∂ψ
∂z

∂2ψ

∂y2
+
∂ψ

∂y

∂2ψ

∂y∂z

)

− δ

Ro

∂u

∂z
= δPrRa

∂T

∂y
+ Pr

(
δ2
∂2ζ

∂y2
+
∂2ζ

∂z2

)
, (18)

ζ = −
(
δ2
∂2ψ

∂y2
+
∂2ψ

∂z2

)
, (19)

∂u

∂t
+ δ

(
∂ψ

∂z

∂u

∂y
− ∂ψ

∂y

∂u

∂z

)
− δ

Ro

∂ψ

∂z
= Pr

(
δ2
∂2u

∂y2
+
∂2u

∂z2

)
, (20)

∂T

∂t
+ δ

(
∂ψ

∂z

∂T

∂y
− ∂ψ

∂y

∂T

∂z

)
= δ2

∂2T

∂y2
+
∂2T

∂z2
, (21)

while the boundary conditions are

u = ψ =
∂ψ

∂z
= 0 at z = 0, 1 and u = ψ =

∂ψ

∂y
= 0 at y = 0, 1 , (22)

T = 1 − cos (2πy) at z = 0 and T = 0 at z = 1, y = 0, 1 , (23)
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and the integral constraints become

∫ 1

0

∫ 1

0

φnζdydz = 0 , (24)

where

φn(y, z) = e±2nπδz
{

sin(2nπy)
cos(2nπy)

}
for n = 1, 2, 3, · · · . (25)

3 Steady and unsteady solutions

The steady-state solution corresponding to the problem considered in this
investigation is more complicated than that pertaining to the basic case due to the
presence of a horizontal temperature gradient. Two methods are used to determine
the steady-state solution. The first is an approximate analytical solution found by
expanding the flow variables in a series in the small parameter δ, while the second
is a numerical solution obtained using a commercial CFD software package.

3.1 Approximate analytical solution

For small δ, an approximate analytical solution can be constructed by expanding
the flow variables in the following series

ψ = ψ0 + δψ1 + · · · ,
ζ = ζ0 + δζ1 + · · · ,
u = u0 + δu1 + · · · ,
T = T0 + δT1 + · · · . (26)

With the understanding that the Rossby (Ro) and Prandtl (Pr) numbers are
O(1), and the Rayleigh (Ra) number is O(1/δ), the leading-order unsteady
problem becomes

∂T0
∂t

=
∂2T0
∂z2

, (27)

∂ζ0
∂t

= Pr
∂2ζ0
∂z2

+ PrδRa
∂T0
∂y

, (28)

∂2ψ0
∂z2

= −ζ0 , (29)

∂u0
∂t

= Pr
∂2u0
∂z2

, (30)

subject to

u0 = ψ0 =
∂ψ0
∂z

= 0 at z = 0, 1 , (31)
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T0 = 1 − cos (2πy) at z = 0 and T0 = 0 at z = 1 , (32)

the integral constraint ∫ 1

0

ζ0dz = 0 , (33)

and the initial conditions
ζ0 = ψ0 = u0 = 0 . (34)

Taking the initial temperature to be the steady-state solution given by

T0 = (1 − z) (1 − cos (2πy)) , (35)

it follows that the temperature remains constant for all time. It is also easily
deduced that u0 = 0. Thus, rotation does not affect the solution at leading order.

A straight-forward calculation yields the solution

ζ0(y, z, t) = − πδRa

(
z2 − z3

3
− 7z

10
+

1
10

)
sin (2πy)

+
∞∑
n=1

ane
−n2π2Prt cos(nπz) , (36)

ψ0(y, z, t) =πδRa
(
z4

12
− z5

60
− 7z3

60
+
z2

20

)
sin (2πy)

−
∞∑
n=1

an
n2π2

e−n
2π2Prt(1 − cos(nπz)) , (37)

where

an = 2πδRa sin (2πy)
∫ 1

0

(
z2 − z3

3
− 7z

10
+

1
10

)
cos(nπz)dz , (38)

for n = 1, 2, 3, · · · . It is worth noting that it is impossible for ψ0 to satisfy all
the boundary conditions; although the condition ψ0 = 0 at z = 1 is not exactly
satisfied, all the other ones are.

As t→ ∞, the following leading-order steady-state solution emerges

ζs = −πδRa
(
z2 − z3

3
− 7z

10
+

1
10

)
sin(2πy) , (39)

ψs = πδRa

(
z4

12
− z5

60
− 7z3

60
+
z2

20

)
sin(2πy) . (40)

The steady-state solution reveals a non-zero background flow, which results
from the horizontal temperature gradient; recall that for the basic case the
background flow is stationary. Dimensionalized plots showing the leading-order
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Figure 2: Leading-order solution for: T0 (top) in K, speed (|�v0|) (second from top),
v0 (second from bottom), and w0 (bottom), in m/s.

steady-state solution are shown in figure 2, and indicate that two circulation cells
develop. The simulations correspond to air at 298 K in a domain having a length
of 20 cm and a height of 2 cm. The temperature difference is ∆T = 0.5 K. The
values of the non-dimensional parameters are Ra = 388.7, Pr = 0.7046, and
Ro = 0.0548.

3.2 Steady-state numerical simulations

The steady-state solution is calculated numerically using the CFD software
package CFX which solves the full Navier-Stokes and energy equations
for arbitrary values of the non-dimensional parameters. In these simulations
periodicity conditions are applied at the left and right boundaries of the domain.
Results for two steady-state simulations will be discussed. The first corresponds to
the basic case, while the second illustrates the effects of a sinusoidally varying
bottom temperature and rotation. The parameter values are the same as those
used in figure 2 for the analytical solution (i.e. Ra = 388.7, Pr = 0.7046 and
Ro = 0.0548). Plotted in figure 3 are the temperature distributions for the two
cases. It should be noted that the range of temperatures is smaller for the basic case
because the bottom temperature for this case is taken to be the average value of the
second case. Plots of the magnitude of the velocity (|�v|) for each case are shown in
figure 4. It should be noted that while the velocity is not exactly zero for the basic
case, it is two orders of magnitude smaller than that in the second case. Contour
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Figure 3: Steady-state temperature distribution for: basic case (top), and sinusoidal
bottom temperature with rotation (bottom).

Figure 4: Steady-state plots of |�v| for: basic case (top), and sinusoidal bottom
temperature with rotation (bottom).

plots of the v andw velocity components for the case having a sinusoidally varying
bottom temperature and rotation are displayed in figure 5. The v and w velocity
components illustrate the circulation resulting from the horizontal temperature
gradient. Comparing figure 2 with figures 3–5, it is clear that the leading-order
analytical solution is in good agreement with the fully numerical solution, both in
the qualitative flow pattern and also in the magnitude of temperature and velocities.

4 Unsteady numerical simulations and flow stability

The flow pattern that develops for unstable cases was also numerically investigated
using CFX. As before, the basic case is also presented for comparison purposes.
Shown in figure 6 is the basic case for an unstable case having ∆T = 4 K,
Ra = 3109 and Pr = 0.7046.

Figure 6 clearly shows that 5 pairs of counter-rotating cells develop. Since the
length of the domain is ten times its height, each cell forms a square. Figure 7
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Figure 5: Steady-state velocity contour plots for the case with a sinusoidal
bottom temperature and rotation: v velocity component (top), w velocity
component (bottom).

Figure 6: Unsteady case with a constant bottom temperature and no rotation:
temperature (top), speed (|�v|) (second from top), v (second from bottom),
and w (bottom).

shows the corresponding case with a sinusoidal bottom temperature and rotation
(Ro = 0.0548). The flow patterns are noticeably different from those shown in
figures 3–5. Here, the flow destabilizes and breaks up into a greater number of
cells; the number of cells was found to depend on ∆T . Velocity plots are presented
in figure 8 for both cases and for various temperature differences, and hence
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Figure 7: Unsteady case with a sinusoidally varying bottom temperature and
rotation: temperature (top), speed (|�v|) (second from top), v (second from
bottom), and w (bottom).

Figure 8: Speed (|�v|) plots for the basic case and for bottom temperature variation
with rotation, for increasing Rayleigh numbers (Pr = 0.7046 and
Ro = 0.0548 for the case with rotation).

Rayleigh numbers. The results suggest that for the case with bottom temperature
variation, the flow becomes unstable for ∆T between 1.5 K and 1.8 K, while
for the basic case this occurs for ∆T between 2.5 K and 4.0 K. Since Pascal and
D’Alessio [1] showed that rotation stabilizes Bénard convection, this indicates that
the impact of bottom temperature variation significantly influences the stability
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of the flow. An interesting feature occurs when ∆T = 12 K for the case with
variable bottom temperature. The apparent trend is that increasing ∆T increases
the number of cells that develop in an unstable flow; however, once the temperature
difference is sufficiently large, the flow pattern resembles that of a stable flow with
two cells, despite the fact that the circulation is intensified.

5 Summary

The combined effect of a sinusoidal bottom temperature and rotation on the
background flow and on the stability of free convective flow was investigated.
Contrary to Bénard convection, a non-zero background flow ensues. This
background flow was determined analytically by taking advantage of the relative
thinness of the fluid layer, and performing an expansion in terms of the thinness
parameter. The background flow was also determined numerically using a
commercial CFD software package. The leading-order analytical solution was
found to be in good agreement with the numerical solution for stable cases.
The impact on the stability of the flow was then investigated through numerical
simulations. Although rotation has previously been found to stabilize the flow,
variations in the bottom temperature was found to dominate and destabilize the
flow when compared to Bénard convection. Lastly, interesting features emerging
from unstable numerical simulations were also presented and discussed.
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