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Abstract

Bubble columns are extensively used in the chemical process industry,
however their hydrodynamics are computationally expensive to simulate, severely
restricting design and optimisation studies. A novel discrete-phase bubble column
modelling approach is proposed where the flow-field in the immediate vicinity
of individual bubbles is predicted from the Reynolds number via an algebraic
bubble flow model, i.e. the Bubble Cell Model (BCM). This contrasts to the
traditional Euler—Lagrange approach, where the flow structure is resolved at a
larger scale using the Navier—-Stokes equations. The construction of the BCM
involves generating the micro-flow fields through solving the analogous case of
the flow over a fixed sphere with the Navier—Stokes equations at 22 equally spaced
Reynolds numbers in the operating range of Re < 270. The model construction
then occurs in two stages, i.e. stage one: the fitting of each velocity vector field
at the discrete Reynolds numbers, and stage two: the cross correlation of the
stage one model parameters with respect to Reynolds number. For stage one, a
hybrid between analytical and statistical models was found to provide accurate fits,
resulting in R? values ranging from 0.9968 to 0.9999. The Reynolds dependence
of the parameters was found to be described through simple polynomial and
exponential models in the second stage construction, producing a model which
generates the velocity vector field around a bubble for a given Reynolds number
as the result of a single algebraic evaluation. The integration of the BCM with a
Eularian macro fluid model has also been investigated for a single bubble pilot
test case.
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1 Introduction

Bubble column simulation requires the resolution of complex hydrodynamic
interactions between the gas and liquid phases. This can be modelled with the
Navier-Stokes equations, however, the solving of the Navier—Stokes equations
at bubble scale, e.g. Volume-Of-Fluid method, is impractical with regards to
computational expense when considering any more than a few bubbles [1]. The
momentum source generated by the bubbles on the continuum fluid phase is
subsequently modelled through experimentally correlated force models i.e. drag,
lift and added mass, which is used in coupling the gas phase to the continuum [2].
The gas phase can then either be tracked as individual bubbles, i.e. the Euler—
Lagrange approach, or approximated as a continuum i.e. the Euler-Euler approach.
These approaches enable larger grid sizes and make the simulation of entire bubble
columns possible. However, the bubble scale flow detail is severely reduced and
computational efficiency remains a problem [3]. Furthermore, the question of
which physical effects to include in the coupling model, is still under debate [4].

It follows that the choice of bubble column simulation approach depends on the
level of flow detail required and the size of the geometry, as illustrated in Figure 1.
The computational expense required for large sized problems can subsequently
inhibit the choice of smaller scale models.

In an attempt to address these issues, relating to multiphase flow simulation in
general, it has been proposed by the authors to substitute the flow-fields in the
direct vicinity of the bubbles in a Euler-Lagrangian framework, with an algebraic
micro-flow model correlated to the Navier—Stokes solution for the appropriate
flow situations. The algebraic flow model will be referred to as the Bubble Cell
Model (BCM). The computationally expensive regions around individual bubbles
are therefore accounted with the BCM, which can be rapidly evaluated, in contrast
to the computationally expensive partial differential Navier—Stokes equations. In
addition, the BCM can be used to determine the force acting on the bubble
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Figure 1: CFD bubble column simulation framework.

WIT Transactions on Engineering Sciences, Vol 74, © 2012 WIT Press
www.witpress.com, ISSN 1743-3533 (on-line)



Advances in Fluid Mechanics IX 277

in the equation of motion and allows the bubble scale flow information to be
approximated.

2 Bubble cell model development

The aim of the BCM is to provide a model of the velocity vector field, uM,
with respect to spatial position, x, around a bubble as a function of Reynolds
number, Re = LZ”Z (where p, D, u,¢; and p represent the fluid density, bubble
diameter, bubble relative velocity and fluid viscosity respectively). The solution
to the Navier—Stokes equations for the flow over a fixed sphere with appropriate
boundary conditions (as discussed in Section 2.1), is regarded as the “true velocity
field”, ut*e, with respect to the construction of the BCM. To approximate ut*"®
as a function of Reynolds number, a two stage fitting strategy has been devised.
Stage one involves fitting the velocity vector fields at discrete Reynolds numbers,
whilst stage two aims to cross correlate the parameters of the stage one model w.r.t.
Reynolds number. This strategy is schematically presented in Figure 2.

2.1 Flow over fixed sphere: data generation

To set up the case, the boundary condition at the bubble surface and the bubble
shape is considered:

o If the liquid is pure enough, it is possible for it to slip along the surface of
the bubbles (free slip condition), in contrast to the flow past rigid bodies,
where slip will not occur (no-slip condition). This very often makes the
flow unseparated in circumstances where the flow around a solid body of
similar shape would be separated (i.e. the fluid flow becomes detached from
the surface of the object at higher Reynolds numbers) or even turbulent
[5]. Consequently, the boundary condition for a contaminant free system,
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He CFD: : .| Stage One: | For all : Stage Two: | :
u'e : u" = (x,0) | Re : a"=f(ReQ) [],
| l ! l
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|\ uM - utrue /’ |\ 0M ~a )

BCM:

u" = BCM(Re, x,) = fi(x,(Re,0)) |

Figure 2: BCM two stage fitting strategy, where f1, «, fo and ( represent the
overall stage one model, stage one parameters, stage two model and stage
two parameters respectively.

WIT Transactions on Engineering Sciences, Vol 74, © 2012 WIT Press
www.witpress.com, ISSN 1743-3533 (on-line)



278 Advances in Fluid Mechanics IX

imposed at the bubble surface on the tangential component of the liquid

velocity, is a zero-shear-stress one rather than a no-slip one [6].

e The shape of the bubble directly influences the local hydrodynamics and can
be transient during bubble motion. According to the research of Tomiyama
et al. [7], bubble motion, shape and velocity are remarkably sensitive
to initial shape deformation. The researchers subsequently proposed a
steady state drag model which is dependent on bubble shape through the
dimensionless Eotvos number (Eo = A%DQ, with Ap, g and o representing

the density difference, gravity vector and surface tension respectively). It has
become apparent that bubble shape is an important parameter which adds
new degrees of freedom to an already complex problem.

For the development of the BCM approach, we restrict the focus onto spherical
bubbles in a contaminant free system. It follows from experimental data [8], that
the spherical assumption is valid for Re < 270 for an air-water system, whilst the
clean system will be accounted for with an zero-shear-stress boundary condition
on the bubble surface. Furthermore, to allow for faster development of the concept,
the work will be carried out in two dimensions. It should be noted that the approach
could be extended to different shaped bubbles occurring in heterogeneous bubble
columns through parametrization of the 26 number, higher Reynolds numbers and
three dimensions.

The Navier—Stokes equations are solved with the Finite-Volume method, using
the SIMPLE pressure-velocity coupling scheme [9] and 2nd order UPWIND
spatial discretization in the Fluent 12 solver (FLUENT INC, USA). The mesh
is created according to the geometry depicted in Figure 3, and its resolution
optimized according to the convergence of the drag force on the bubble surface.
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Figure 3: Case geometry and resulting velocity magnitude contours following
CFD simulation. The geometry is set up with respect to the radius (R) of
the bubble and the ratios chosen to allow flow dynamics to sufficiently
develop across the domain.
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This resulted in 164,983 data points in the BCM region, which was chosen as 5
times the bubble radius. The drag coefficients for the Reynolds numbers evaluated,
corresponded to the experimental data for bubbles in pure systems [10].

2.2 Stage one model

2.2.1 Analytical solutions

Analytical solutions provide a good starting point to the development of the BCM,
since they capture useful features of the flow structure. Solutions are possible
through simplifying assumptions, such as either creeping flow (i.e. zero advective
terms), or potential flow (i.e. zero viscous terms), making analytical evaluation
of the steady state, incompressible Navier—Stokes equations (eqn. (1) and (2))
possible. Here u, p and S refer to the fluid velocity vector, fluid pressure and the
body force vector respectively.

V-u=0 (D
p(u-vVu) =-Vp+ puV’u + S )
advective terms viscous terms  body forces

The creeping flow solution (valid at Re < 1) was derived by Stokes
[11], by assuming axisymmetric flow and writing the Navier—Stokes equations
in terms of the Stokes stream function ¢ (the two velocity components are
expressed as derivatives of 1 such that continuity is automatically satisfied) in
spherical coordinates ( where r and @ correspond to the radial and angular spatial
components, centred around the centre of volume of the bubble), simplifying the
problem considerably. Following the solution strategy by Slattery [12], the stream
function is proposed as a fourth order polynomial whose coefficients are obtained
through the substitution of the boundary conditions. Applying the zero-shear-stress
boundary conditions, eqn. (3)—(5), the stream function is obtained, which upon
differentiation with respect to 8 and r leads to radial and angular velocities, u,
and uy, which are subscripted for the creeping flow solution as u, cr and ug,cr
in eqn. (6) and (7). The free stream velocity here, u ., corresponds to the relative
bubble velocity w,¢;.

Uy, = Uso cos(0) 3)
Upf,_p =0 4)
dUQ|r:R .
a0 ®)
3(R\ 1(R\’
Uy, cr(r,0) = uso |1 — i\ )l cos(0) (6)
1 3
ug,cr(r,0) = us [1 - g(?) +3 <§) } sin(6) (7)
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Although zero viscosity fluids do not actually exist, the assumption (valid at
Re — o0) provides a reasonably good description of the velocity profile, except
near the body and beyond the line of flow separation [13]. The potential flow
solution is derived by defining velocity potential ®, such that u = —V, the
zero-shear-stress boundary condition, is automatically satisfied by the inviscid
assumption. For incompressible potential flows, ® satisfies Laplace’s equation
which can be solved with the method of separation of variables [12], and upon
differentiation yields the potential flow velocity fields, u, pr and ug pr, as
presented in eqn. (8) and (9).

ur pr(r, 0) = uoo [ -1+ <§)3} cos(0) (8)
g pr(r,0) = uoe [1 + % (?)3} sin() 9)

The solutions for both simplifying assumptions are simple algebraic expressions
which allow for rapid numerical function evaluation. However, neither of these
solutions are able to capture the flow separation and wake features which are
artefacts arising when Re > 1, resulting in poor flow prediction at the rear of
the bubble and incorrect hydrodynamic force calculation which limits the practical
applicability of these solutions.

2.2.2 Statistical modelling

The need for statistical modelling arises from an attempt to bridge the gap between
the two extrema cases of the analytical solutions i.e. Re = 0 and Re = oo,
by accounting for features occurring in the non-idealized flow regimes. Since the
aim of the BCM is rapid functional evaluation, a semi-analytical model, expressed
through algebraic expressions, would be justified.

The two analytical models, associated with creeping and potential flow, is to be
combined to take account of a significant portion of the flow structure. A linear
combination of the two solutions is used, i.e. eqn. (10) and (11), where a; 1 to
a9 represents the weighting coefficients obtained through linear least squares
with respect to ut*®. For this purpose, only data from the region 7/2 < 6 < 37/2
is considered, since this region is best represented by the two solutions, whereas
the wake feature at the rear of the bubble negatively impacts the least squares fit by
attempting to take account of a structure the model is not capable of representing.

M
U, A = Q1,1Ur,CF + Q1,2Ur PF (10)

M
Uy A = (2,1U9,CF + (2,2U9 PF (11)

The residuals to these solutions, i.e. eqn. (12) and (13), require statistical
modelling to be accounted for. This has been achieved by considering each of
the residual velocity surfaces, Uy res and ug res across the Reynolds operating
range, and identifying regions following simple functional forms. In addition, the
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Figure 4: Contours of |Uy res|/co. illustrating the change of 6. w.r.t. Reynolds
number . R; and Ry denote region 1 and region 2.
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Figure 5: Contours of ug yes /oo at two different Reynolds numbers.

symmetry across the x = 0 line, was also used to simplify the problem.

true M

Ur res — U, - ur,A (12)
t M
Up,res = uerue - uQ,A (13)

The residual of to the radial velocity, was largely focussed in the bubble wake
region. This was captured by identifying a critical angle, 6., corresponding to the
maximum of the local peak at the rear of the bubble, which divides the domain into
two regions, as illustrated in Figure 4. These regions were subsequently captured
through a series of exponential models. The final model for u} had a total of 17
parameters (o ;) and resulted in R? values between 0.9968 - 0.9999. The residual
of the angular velocity was a maximum at the bubble surface, which decayed into
the radial direction. This surface was approximated through finding the appropriate
model to represent Ug res|r=r and fitting the exponential decay of this model
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Table 1: Surface fit results of uM and u}! with varying Reynolds number.

Re uM:MSE uM: R? u}l:MSE: u}l: R?
0.1 3.1015e-12 0.9968  8.1015e-12 0.9974
15 7.2915e-08 0.9989  2.9301e-07 0.9978
75 3.9737e-07 0.9998  1.7457e-06 0.9995
135 7.0539e-07 0.9999  3.9877e-06 0.9997
195 1.2357e-06 0.9999  6.9260e-06 0.9997
270 2.2273e-06 0.9999  1.1348e-05 0.9998

radially. This resulted in a reasonable approximation of the data with R? = 0.9974
to 0.9998, with 11 parameters (c2;). (Please note that due to space restrictions it
is not possible to expand on the residual models i.e. ui\flres and u .. They will
however be discussed in more detail in an upcoming paper by the authors.)

The overall results are presented in Table 1. It is seen that the accuracy of
the approximation increases with Reynolds number. This is due to the deviations
from the potential flow solution, mainly consisting of the wake feature, becoming
concentrated in a smaller region as Re increases, thereby allowing for a more
accurate fit. At the lower range the wake is more spatially spread out, and whilst
the uMA and ug{IA approximations becomes better as the creeping flow solution is
approached at Re = 0.1, the u. .. and ug’i.., models are not as accurate at lower
Reynolds numbers. Response surface strategies have also been evaluated for the
same data, however they resulted in higher MSE’s with more parameters [14].

2.3 Stage two model

To ensure a smooth response of the first stage parameters, o ;, with respect
to Reynolds number, each first stage fit was carried out using the parameter
estimations from the previous fit as initial guesses, thereby warm starting the
optimization e.g. the parameter estimates for the Re = 270 surface is used as
initial guesses for the Re = 255 surface. Carrying out the procedure from high to
low Reynolds numbers provided the most well behaved curves. The dependence of
the s w.r.t. Re was found to be described by first and second order polynomial
and exponential models. A typical example of the behaviour of the o/s is given in
Figure 6.

The final parameters to the BCM was found by optimizing all of the (
parameters with respect to the original CFD surfaces i.e. ut*“®. This results in a
bubble flow field model dependent on the Reynolds number (Re), spatial position
(r and #) and the stage two fitting parameters ().
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Figure 6: Second stage fit of parameters 1,1, o1,2 and a1 17.

3 Integration of bubble cell model with macro flow model:
single bubble test case

With the BCM constructed, the next step is to integrate it with a macro flow model
to account for the continuum outside of the BCM regions. For the development
of this model, the Openfoam C++ libraries where used [15]. The BCM regions
are tracked in a Lagrangian framework, and the Navier—Stokes equations solved
on a structured grid for the continuum. A structured grid is used such that the
computational cells falling within the BCM regions can be identified, through
their structured relationship, in a computationally efficient manner. To exclude
the BCM regions from the Eularian flow computations, the linear system of
equations is modified. The corresponding values are set to that of the BCM
and the cells are eliminated from the equations. Furthermore, the edges of the
BCM regions neighbouring the computational cells, act as “internal boundary
conditions”, thereby closing the problem.

As a pilot test to the BCM approach, the case of a single bubble rising is
considered with a fixed Reynolds number as illustrated in Figure 7. The resulting
flow field in the continuum qualitatively follows experimental and numerical
modelling trends [16, 17]. A rigorous analysis and validation of the results
however, remain to be completed at this stage. Furthermore, the equation of motion
for the BCM case needs to be developed.

4 Conclusion

A novel bubble column modelling approach is proposed, with the goal to offer
bubble scale flow information at reduced computational expense. This is aimed
to be achieved through the introduction of an algebraic flow model which
approximates the flow field around individual bubbles, i.e. the BCM, in contrast
to having to solve a set of non-linear PDE’s. The BCM was constructed through a
two stage fitting process, where the parameters are correlated with CFD generated
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Figure 7: Resulting velocity vector field of a single bubble rising in a Euler—
Lagrange framework following the BCM approach. The bubble is
simulated as Re = 120.

data, for the analogues situation of flow over a fixed fluid sphere. The combination
of the creeping and potential flow analytical solutions provided a good starting
point by taking account of a large portion of the flow field. The non-linear
deviations occurring outside of their idealized operating regimes however, required
the introduction of statistical models. The combination of these models resulted in
a semi-analytical model capable of approximating the flow field very accurately in
the range examined. Furthermore, the cross correlation of the stage one parameters
with Reynolds number proved to be successful with simple polynomial and
exponential functions, thereby arriving at the BCM.

The BCM has been integrated with a “macro Eularian” flow model, whereby
the BCM regions are tracked in a Lagrangian framework. This has been performed
successfully with a pilot test case, where a single bubble rising is simulated with
a fixed Reynolds number. Rigorous validation remains outstanding, however, the
results qualitatively appear realistic and illustrates the potential of the approach.
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