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Abstract 

The surface-tension forces and the pressure force at a gas–liquid interface were 
balanced. This was done at a differential control surface under hydrostatic 
pressure. As a result, three quadratic and two linear equations were derived 
representing the conditions for equilibrium at the interface. These equations have 
eight roots describing eleven different equilibrium states. The most important is 
the Young-Laplace formula under hydrostatic pressure which is denoted in the 
spherical coordinate system. Hence, it is a quadratic equation. The first root of 
this equation describes a pendant drop, drop or bubble, while the second one 
circumscribes a sessile drop. There are two solutions for the uniform pressure, 
where one of them is the Young-Laplace formula. It is concluded that the surface 
existence depends on the pressure difference between both bulk phases. A plane 
is formed when the surface-tension forces equilibrate themselves. Under uniform 
pressure the interface is a sphere and its other shapes need a pressure gradient. 
To form a drop or a bubble the pressure difference must be higher than its border 
value. A sessile drop exists if the gauge pressure is negative, while a pendant 
drop requires a positive value. A comparison with experimental results is done 
for the bubble. 
Keywords: Young-Laplace equation in spherical coordinates, static equilibrium, 
drop, bubble. 

1 Introduction 

To describe the force balance on the liquid–gas interface, the Young-Laplace 
equation is usually applied. The equation must be solved for each point 
separately. Hence, it is computationally difficult to balance the surface-tension 

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 74, © 201  WIT Press2

doi:10.2495/AFM120 123

Advances in Fluid Mechanics IX  251



and hydrodynamic forces on a differential surface or volume. The Young-
Laplace equation was derived from work involving the expansion of a soap-
bubble surface. The same formula can be also applied as a condition of static 
equilibrium because the surface tension is considered simultaneously as a 
surface-tension force per unit length and, following Tolman  [1], either as the 
quotient of the energy change with the change in surface area at constant 
entropy, constant composition and constant volumes for the two phases 
(measured at the surface of tension) or as the rate of free energy change with the 
change in surface area at constant temperature, constant composition and 
constant volumes. The theory of wetting phenomena on curved surfaces has been 
developed to date by the derivation of formulas or theorems originating from an 
“energetic” definition and their application in force balances. Hence, this 
solution is limited to one scalar equation. Because a force may have three 
components, this equation may not be applied as a condition for equilibrium in 
the case of an unsymmetrical shape, nor can the shape of the surface be 
described using only the force balance due to the lack of the corresponding 
equations along the tangents to the surface directions. 
     The main goal of the current work is to develop a wetting theory of curved 
gas-liquid interfacial surfaces beginning directly from the surface tension defined 
as the unit force. This was expected to yield two equations of force balance for 
the symmetric shapes for the droplet or bubble under hydrostatic pressure. 

2 Mathematical model 

The topic of discussion here is the prediction of the shape of the liquid–gas 
interface under hydrostatic pressure. To do it, the forces applied on the surface at 
rest are balanced. As surface forces shape the surface, they should be balanced at 
the surface. While the fixed coordinate system is used, the hydrostatic pressure 
creates a changing radius of curvature. Therefore, the surface with a varying 
radius along the depth of the liquid must be described. 
     The surface presented in fig. 1 is defined in the spherical parameterisation in 
which the radial distance changes along the  coordinate:  

   f , r( ) sin cos ,r( ) sin sin ,r( ) cos           (1)

     The versors of the surface-coordinate system are  

          
   

cos cos cos sin sin        δ i j k  (2)

  
  

sin cos  δ i j  (3)

where  is defined in fig. 3. 
     Moving along the tangential vector, the surface curves in the direction of the 
movement. The curvature is described by the unit vector perpendicular to the 
surface. It arises from the structure of the surface, which is a two-dimensional 
object existing in three-dimensional space. Taking the above into account, it is 
necessary to define the normal unit vector: 

          
   
n sin cos sin sin cos       δ i j k  (4)
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Figure 1: The assumed surface coordinates and the versors. 

 

2.1 The force system 

No matter how small, a fluid is a substance that deforms continuously under the 
application of tangential stress. In the considered case, the shear stresses equal 
zero. Therefore, only the normal stresses are sustained. As a result, the resultant 
force acting on the surface is normal to the surface. The resultant pressure force 
that tends to expand the surface, acts in the centre of the area. Because the force 
system has to satisfy Newton’s third law, the directions and senses of the 
resultant surface forces preventing expansion must be oriented out from the 
surface. However, the components of the resultant surface-tension forces must be 
applied at the boundary arc of the surface, and these are tangential to the surface.  
     The force system is shown in fig. 2. In this case, the resultant pressure force is 
the active force. Therefore, the resultant of the tangential surface forces is the 
reactive force. A differential surface element is defined using two arcs with radii 
r and rsin (cf. fig. 2). Therefore, this surface is a curvilinear rectangle (fig.1 and 
fig. 2). Hence, we have four infinitesimal surface-tension forces (fig. 2). As a 
result, we obtain two resultants, one each of each pair of these forces. These 
resultants equilibrate the infinitesimal pressure force. 
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Figure 2: The force system for an infinitesimal element. 

     The pressure force is expressed by the formula 

  
 2

00p n

r sin d d
p p

cos

  


dF dA δ  (5)

     The surface tension forces in the  component are presented 

 
 

01 01rd cos   dF δ  (6)

  
 

0 1 0 1rd cos   dF δ  (7)

     Next, the components in the  direction are obtained: 

    
 

10 102 2r dr sin d d ,    dF δ  (8)

      
 

10 102 2r dr sin d d .    dF δ  (9)

     The resultant force in the  direction is: 
    
 

  
2

00 002 n

d
r sin d cos dr sin cos d r sin sin d d 

        dF δ δ  (10)

and in the  direction: 

  
  

00 002 2
2 2 n

rd d rd d
cos sin sin sin

cos cos 
      
 

dF δ δ  (11)

     The system of the resultant forces and the cross section of the investigated 
surface are showed in fig. 3. Hydrostatic pressure is calculated as follows: 

 0p g r r cos      . (12)
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Figure 3: The force system resolved into meridian and normal directions. 

2.2 The force balance 

The resultant surface tension forces and pressure force are balanced. 
Respectively, their components along the meridian and normal directions to the 
surface must equal zero. First we obtain the force balance in tangential direction: 

    2
1 1

dr
tan dr rd

rd
 


 (13)

and the balance of the forces in the normal direction: 

 
 

 
 

 

2

0

1
1

1

dr
r

d gr r r cos  


 
(14)

     Substituting the relationship 
 r r g   (15)

into Eqs. (13) and (14), we obtain a system of dimensionless equations as 
follows: 

 

  

 

 



   

  
     


   
  

2

2

1 2 0

1
1 0

1o

dr dr
tan tan

r d r d

dr

r d r r r cos

 
 

 

 (16)

for which the solution is the product of the left sides of the five equations: 
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     2 0or r r cos  (17)
  0r  (18)

   0or r cos   (19)

     22 0or r r cos sin   (20)

     22 0or r r cos cos   (21)

     These equations can be expressed in dimensional form as 

  0 2g r r cos r    (22)

 0r  (23)

  0 0g r r cos   (24)

   2
0 2g r r cos sin r     (25)

   2
0 2g r r cos cos r     (26)

     Formulas (17) and (22) are the Young-Laplace equation for the hydrostatic 
pressure written in spherical coordinates. These formulas can be solved as a 
quadratic equation with r as the variable. Hence, the shape of the surface can be 
found easily.  
     In contrast, their solution in the Cartesian coordinate system, in which the 
double surface tension is divided by the radius of curvature, requires the solution 
of a second-order differential equation. It can be concluded that the surface can 
exist if the resultant surface-tension force equals zero (cf. Eq. (24)), but it cannot 
be formed if the hydrostatic pressure is equal to zero. The last conclusion arises 
from the analysis of Eqs. (22), (24), (25) and (26) and is expressed implicitly by 
Eq. (23). 

2.3 The shapes of the interfaces 

As the shapes of the liquid–gas interfaces are presented by the solutions of Eqs. 
(17)–(21), we can distinguish four kinds of surface equilibrium. The first is 
described the Young-Laplace formula, i.e., Eq. (17). The second is the flat 
surface, expressed by Eq. (19), with a lack of a surface as its particular case (cf. 
Eq. (18)). The third and fourth kinds of equilibria have not been connected with 
any real situation so far. Therefore, they can be only the solutions of the force 
balance without any physical meaning.  
     Although the analysis is made in the surface-coordinate system, the graphs 
are plotted in Cartesian coordinates: 

 x r sin  (27)
 z r cos   (28)

where the variables are defined in fig. 1. Because these solutions have 
axisymmetric shapes, they are plotted as cross-sections in the x+z+ plane. 

2.3.1 The Young-Laplace equation 
The solution of Eq. (17), i.e., the Young-Laplace formula with hydrostatic 
pressure in spherical coordinates, has two roots: 
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 
  


2

1

8

2
o or r cos

r
cos




 (29)

 
  


2

2

8

2
o or r cos

r
cos




 (30)

     Because these solutions have discontinuities at , the limits of the 
functions at this point must be calculated. To do so, we represent the square roots 

in Eqs. (29) and (30) as Taylor series. If   2
0 0 1r r , the limits of the roots 

1r  

and 
2r  are calculated as follows: 




1
2

2

o

lim r
r 

 (31)




 2

2
lim r

 
 (32)

     If    2
0 0 1r r , these limits are presented below: 




 1

2
lim r ,

 
 (33)




2
2

2

o

lim r
r 

 (34)

     Hence, in the case of a positive hydraulic head, 
0r , the root 

1r  is a 

continuous function. If the hydraulic head has a negative value, the solution for 


2r  has no discontinuity. We can summarise that the hydraulic head is the 

asymptote for some solutions. Note that 
1r  and 

2r  can generally be complex 

numbers. To return a real number for the square root over the interval  


0r  cannot be less than 2 2 . Over the domain  cosine  is less than 

zero, and so the discriminant has a positive value. The solutions of these 
equations for this positive border values are presented in fig. 4. The graphs for 


1r  and for 

2r  over the interval  show the shapes of the interfaces 

when the pressure inside is higher than their surroundings. The plots for 
2r  over 

the interval  present the surface limited in volume with internal 
pressure lower than the surroundings. 
     In the case of higher gauge pressure, the drop has no tangent point with the 
upper layer, but its shape is almost spherical because the vertical diameter is 
slightly longer than the horizontal one. These diameters will be equal if 

 0 55 2r . , and so the drop will then be a sphere.  

     The sample solution for  00 2 2r  is presented in fig. 4b). The intervals in 

which the real roots of eqs. (29) and (30) can be found are noted in this figure. 
The results for 

1r  model the case of a pendant drop that is still connected to the 

solid phase. We can conclude that the drop will form if the dimensionless gauge-

pressure value reaches 2 2 . Although gaps in the plots are observed for 
2r  in 
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the domain , this does not indicate a lack of the surface at the gap 
period in this case; rather, it only means the lack of a state of the equilibrium for 
the surface with the assumed force system. The surface could thus accelerate, or 
other forces could be introduced to the analysis. A different situation is observed 
in the interval . Because cosine  is less than zero here, the 
discriminant in Eq. (30) is a positive value. Thus, there is no gap for 

2r  within 

this interval.  
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a)                                                           b) 

Figure 4: The plots of eqs. (29) and (30) for: a)  0 2 2r , b)  0 2r . 

     The plots for   02 2 0r  are the mirror image of the plots for their 

modulus values. There occurs the shift between solutions for Eqs. (29) and (30). 
The second root describes the sessile drop well. Therefore, the plots for   0 2r  

are the mirror image of the plots in fig. 4b), where the hydraulic head line is the 
axis of symmetry. 

2.3.2 The flat surface and the lack of surface 
The flat surface is the solution of Eq. (19): 


 4

orr
cos

 (35)

     The height of the surface or the depth of the liquid is equal to hydraulic head, 


0r . As the right side of Eq. (19) is zero, there is no resultant surface-tension 

force. However, this does not mean that these forces are not present but rather 
that the surface-tension forces achieve equilibrium on the plane and only their 
resultant does not exist. 
     The most extreme state is the lack of a surface if the hydraulic head equals 
zero, which is expressed by Eq. (20). This is an important finding of this work. 
The surface can exist if the surface-tension forces balance each other, but the 
surface cannot be shaped if there is no pressure difference between two sides of 
the surface (i.e., between the two bulk phases). This conclusion is confirmed by 
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the limit of the function calculated by Eq. (32). A liquid–gas surface will not 
reach the level of the hydraulic head if the surface-tension forces do not achieve 
equilibrium. These situations are presented in figs. 4, 5. 
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a)                                                           b) 

Figure 5: a) The graphs of Eqs. (36) and (37) for  0 2 2r , 

b) The graphs of Eqs. (38) and (39) for  0 2 2r . 

2.3.3 The third kind of equilibrium state 
This solution has not been connected with any experimental observations so far, 
and its properties have not been described in detail.  
     The third equilibrium state, defined by Eq. (20), has two roots: 

 
  


2 2

5

8

2
o or r sin cos

r
cos

 


 (36)

 
  


2 2

6

8

2
o or r sin cos

r
cos

 


 (37)

     The graphs of Eq. (36), plotted in fig. 5a) have shapes similar to a horn torus. 
The plots of Eq. (37) are tangent to the line of the hydraulic head because sine  
for  in Eq. (20) is equal to zero. For that reason, this equation is 
decomposed into two: (18) and (19) (i.e., the lack of a surface and a flat surface, 
respectively) in this point. The solution for the plane is plotted in fig. 5a) at 
which makes this solution different from the cases described in Sections 
 2.3.1 and  2.3.4. The depth of the lower layer (i.e., the difference between the 
hydraulic head and the vertical coordinate of the lower surface) is tangent to the 
upper plate (the solution for and it increases up to its maximum 
value (for = 0.9553) then approaches the hydraulic-head line. The height of the 
upper layer (the solution for rises from 0 (for = ) to its maximum 
(for = 2.186) and then approaches the hydraulic-head line.  
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2.3.4 The fourth kind of equilibrium state 
The fourth equilibrium state, given by Eq. (21), has two roots: 

 
  


2 3

7

8

2
o or r cos

r
cos




 (38)

 
  


2 3

8

8

2
o or r cos

r
cos




 (39)

     The seventh root of the general force balance given by Eq. (38) has the shape 
of a thin drop suspended within another one, cf. fig. 5b). The upper layer (the 
solution for  is largest for = 0, and then it decreases and approaches 
the hydraulic-head line. The lower layer (the solution for  is deepest 
for  0, and it monotonically approaches the hydraulic-head line. 

2.3.5 Surface under uniform pressure 
Eq. (14) under uniform pressure takes the form 

2

1
1

1

dr
r

d pr


 
  
 

, 
(40)

while eq. (13) does not change. There are two solutions of eqs. (13) and (40):  
2

p
r


 , (41)

22
p cos

r

     . (42)

     Formula (41) is well known Young-Laplace equation and describes bubble 
under uniform pressure that shape is spherical. Although, it is common known 
result, for the first time this shape was derived from the complete force balance 
directly. Eq. (42) seems to be only mathematical solution that has not been 
observed experimentally, which cross-section is two equal bubbles where second 
bubble is attached under the first one. 

3 Summary and discussion 

It was proven that it is possible to obtain a complete system of equations for the 
static equilibrium of a surface under hydrostatic pressure for all fluids that do not 
sustain shear stresses when at rest. To predict the shape of this surface, a new 
differential surface with a varying radial distance along the meridian direction 
was defined. The pressure force and surface-tension forces were balanced on this 
surface. In the method presented herein, it was possible to balance the surface 
forces and the surface-tension forces on the control surface. This had not 
previously been possible, and it represents the major finding of this work. As a 
result, a system of two equations was obtained: one each in the radial and 
tangential directions. Their solutions were decomposed into three quadratic and 
two linear equations with eight roots. Due to the existence of discontinuities, 
they can describe eleven different situations. The first solution is the Young-
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Laplace equation with the interface under hydrostatic pressure. To obtain the 
results in the traditional way, a second-order differential equation must be 
solved. In the achieved method, a simple quadratic equation is instead solved, 
which makes the calculations quite simple. The linear solutions are the flat 
surface and the lack of a surface. Although they are both trivial, their presence 
proves the generality of the developed model. Furthermore, two new solutions 
were obtained that seem to be unconnected with any physical situation.  

3.1 Conclusions 

We drew the following conclusions for a surface under pressure and surface-
tension forces only: 

 A surface under uniform pressure is a sphere. 
 A plane is formed if the surface-tension forces equilibrate themselves. 
 Other shapes occur if a pressure gradient exists and the surface-tension 

forces equilibrate pressure force. 
 A surface cannot exist without a pressure difference across both of its 

sides. 
 The pressure forces are the active forces, whereas the surface-tension 

forces are the reactive forces, which only act to curve the surface. 
 To form a closed interface (e.g., a drop or a bubble), the interior 

pressure cannot be less than its border value; i.e., the modulus of the 

hydraulic head must be a factor of 2 2  or more times higher than the 
capillary constant. 
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