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Abstract 

The fluid-structure interaction for an elastic cylinder in an axial flow was studied 
numerically with the ALE method and the LES turbulence model. The 
commercial CFD software Fluent is used as the fluid solver and the Euler-
Bernoulli beam solver is embedded into Fluent by its user defined functions 
(UDF). Two types of cylinder are included in this study. The motion for the first 
type of cylinder is constrained in one lateral direction and for the second in two 
lateral directions. The two types of cylinder are both released from their 
equilibrium state. When the stiffness is kept large enough, only weak oscillatory 
is induced by the flow. However, the motion of the cylinder induced by the flow 
may become unstable in the form of either buckling or oscillatory, when the 
stiffness becomes small enough. In this study, it is found that with the same 
simulation parameters the first type of cylinder is buckled and the second has an 
oscillatory. When buckled, the cylinder is located at a new state with weak 
oscillatory. The oscillatory after the instability has much larger amplitude than 
that before the instability. 
Keywords: CFD, fluid-structure interaction, fluidelastic instability, buckling, 
flutter. 

1 Introduction 

One of the most classical subjects in fluid mechanics is the flow over cylinder, 
by which many interesting and significant phenomena are discovered such as 
Karman vortex streets [1] and also by which, for example, one can get the Kutta-
Joukowski theorem, one of the most basic theorems in aerodynamics [2]. 
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However, this is almost for a rigid cylinder and the flow past a deformable 
cylinder attracts more and more interest of researchers due to not only its 
academic importance but also a lot of applications in engineering such as nuclear 
station design, building and so on. In this case, the fluid-structure interaction 
(FSI) will arise. FSI is a big topic and includes many aspects, nevertheless in this 
paper we just focus on a slender deformable cylinder subjected to axial flow. 
     This problem has been studied by many researchers and a good recent review 
was conducted by Wang and Ni in [3], where they also reviewed other FSI 
systems besides the system in this paper. In 1966, Paidoussis [4] developed a 
theory to deal with the dynamics for a single cylinder subjected to axial flow 
based on the Lighthill theory [5], which was used to get the force related to 
added mass, and Taylor’s theory [6], which was applied to calculate viscous 
force imposed on the cylinder. The two kinds of force related to fluid flow and 
other kinds of force all were imposed on the cylinder regarded as an Euler-
Bernoulli beam in his theory [4]. Based on his theory, Paidoussis [4] concluded 
that the stability of the system is determined partly by the dimensionless 
velocity, the definition of which will be written in the following, i.e. the flow 
damps the vibration for small dimensionless velocity while the cylinder may 
become instable, either in the form of buckling or flutter, when this parameter 
becomes large enough. He also conducted experiment to check his theory [7]. 
Taking gravity into account and modifying frictional force, Paidoussis also 
developed his theory further [8], however still a linear theory, which was mended 
further by Lopes et  al. [9] into a nonlinear one for cantilevered cylinder in axial 
flow. The basic conclusion based on this nonlinear theory and that based on the 
linear theory have no crucial differences [10, 11]. In addition, the idea of 
Paidoussis’s deriving his theory can be extended to several cylinders subjected to 
axial flow [12–14]. 
     When the flow velocity is small, the cylinder could vibrate but with small 
amplitude. This kind of vibration, often called sub-critical vibration, is related to 
the perturbation of flow field [15, 16]. Some former researchers used semi-
empirical methods to predict the amplitude of this kind of vibration [17–19]. But 
one must have the loading distribution available from experiments in order to 
adopt those methods in practice. 
     It is very manifest that one should consider both the fluid flow field and the 
structure dynamics when he deals with FSI. In some simple cases, one can get an 
analytic solution for the FSI system [20]. But unfortunately, on the other hand, in 
the most cases one can not get a fluid flow field solution to give enough 
information to the structure, even if the structure is not of complexity, e.g. the 
FSI system in this paper, a cylinder subjected to axial flow. Even in the theories 
mentioned above, the flow field is actually obtained based on some assumptions. 
Thus in this paper, we simulate numerically the FSI system shown in fig. 1, 
namely solve the fluid flow field in the arbitrary Lagrange-Euler (ALE) frame 
with CFD and the cylinder dynamics equation numerically. The paper is divided 
into four parts. The model and governing equations will be introduced in the  
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second part, followed is the third part, where the numerical details will be 
illuminated. In the last part, we will discuss the results and make a brief 
conclusion. 
 

 
Figure 1: Schematic model. 

2 Model and governing equations 

The FSI system is shown in fig. 1, where D denotes the outer diameter of the 
cylinder. The cylinder clamped at its two ends, 20D long with its inner diameter 
0.88D, is located in the fluid flow confined by a cylindrical pipe that is the same 
long as the cylinder with 4D diameter. The fluid could flow from one end to the 
other, inducing the vibration of the cylinder. In this paper, we study two cases for 
the model, in the first of which the cylinder is constrained only to vibrate in one 
lateral direction, while in the second of which the cylinder can vibrate in two 
lateral directions. 
     For the different cases respectively, the same parameters are adopted in the 
simulation. The main parameters are listed in table 1, where the dimensionless 
velocity υ and the mass ratio β are defined by eqns. (7) in section 4. The 
Reynolds number Re is based on the hydraulic diameter, which is 3D, and the 
inlet flow velocity υ0. 

Table 1:  The parameters of calculation. 

Case 1 2

Re 8×104 

υ 6.0173 8.8997 6.0173 8.8997

β 0.4699 0.4699 0.4699 0.4699

 
     First, it should be noted that the fluid flow velocity here is small and there is no 
need to consider the compression of the fluid. Therefore the incompressible 
Navier-Stokes (N-S) equations are one of the bases. Generally speaking, the fluid 
domain deforms in the process of simulation due to the deformation of the 
interfaces between the fluid and structure domains. To take into account the 
deformation of the fluid domain essentially, one method for CFD is rewriting the 
N-S equations as arbitrary Lagrange-Euler form, i.e. ALE N-S equations [20, 21]: 
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where t, υ, p, ρ and μ are time, fluid velocity, pressure, density and viscosity 
respectively; υ


 refers to mesh node velocity, which related to the deformation of 

the fluid domain. One can find the detailed derivation in [20]. In eqns. (1), the 
flow variables are solved in Euler frame as usual while the mesh nodes are 
regarded in Lagrange frame. This is why eqns. (1) are called ALE N-S equations. 
It is easily seen that eqns. (1) become the common N-S equations if the mesh 
node velocity 0υ . The large eddy simulation (LES) model [22, 23] is adopted 
to deal with the turbulence and the Smagorinsky-Lilly model [22, 23] is utilized 
as the subgrid-scale model. 
     The cylinder is considered as an Euler-Bernoulli beam and currently the axial 
loading and gravity are ignored here. The coordinates system is shown in fig. 1 
and right-hand. The dynamic equation is [24] 
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with u(z) being the displacement of cross sections in beam, EI, A, ρb being the 
modulus of flexural rigidity, cross-sectional area, density of the beam, 
respectively, q(z, t) being the loading on beam and calculated after the fluid field 
is solved. Eqn. (2) is just for the vibration of cylinder in one plane (for example 
x-z plane) and the dynamic equation for the other plane is ignored here, because 
they have the same form. Eqn. (2) can be solved numerically by finite element 
method (FEM), and the numerical details are explained in the following part. 
The boundary conditions at two ends of the cylinder are both clamped as 
mentioned above, which give 
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with L = 20D being the length of the cylinder (see fig. 1). 
     In addition, the mesh is remeshed at each simulating step by spring analogy 

[23], in which the nodes of mesh are considered as being connected by fictitious 
springs whose stiffnesses are concerned with the locations of nodes. In this 
paper, the fictitious spring constant between two nodes is assumed being inverse 
proportion of their distance [23]. 

3 Numerical approach 

The simulation on FSI actually needs to treat three distinct fields coupled 
together [25]. The first field is fluid flow field governed by N-S equations, the 
second is related to the structure deformation and the last one refers to the mesh 
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motion. These three coupled fields give rise to three equations sets still coupled 
together after discretization, making a great challenge for numerical simulation. 
In the past years, to overcome this challenge, many researchers [25–28] proposed 
many available numerical approaches, which, however generally speaking, can 
be classified roughly into two major categories, monolithic [26] and partitioned 

[25, 27, 28]. The monolithic approaches do not uncouple three numerical 
equations sets and solve them simultaneously as one, while the partitioned 
approaches solve them in sequence. The monolithic approaches have better 
numerical stability [27] but cost more computational resources than the 
partitioned ones. In practice, one of major difficulties in adopting the monolithic 
approaches is that the programming codes for them should usually be rewritten 
and can not reuse efficiently the already existing CFD or structure solvers. 
Therefore, the partitioned approaches are still popular and applied in this study. 
     The applied partitioned scheme is shown in fig. 2 and the same as CSS in 
[28]. The commercial software Fluent is utilized as the CFD solver, in which the 
ALE N-S equations are discretized by finite volume method (FVM) [23], and the 
structure codes by finite element method [29] based on eqns. (2) and (3) are 
embedded into the former by its providing user-defined functions (UDF) [23], 
some of which provide the access to controlling the motion of fluid domain mesh 
in simulation. The algorithm of updating mesh has been explained above and is 
implemented in Fluent. Firstly, the flow field is calculated by Fluent and 
sequentially obtained is the loading exerted on the cylinder (regarded as a beam), 
by which the structure codes determine the deformation of the cylinder, forming 
new boundary for the fluid domain. Then Fluent updates the mesh and a new 
cycle begins if needed. It should be noted that the fluid flow in all cases is 
simulated with turbulence model. 

 

Figure 2: Simulation steps. 

     For the flow simulation, the first order implicit method for temporal 
discretization and the bounded central differencing scheme for spatial 
discretization are adopted with the PISO method for pressure-velocity 
coupling [23]. For turbulent flow, the LES model is utilized with Smagorinsky-
Lilly as subgrid-scale model [22, 23]. 
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     Now, we focus on the discretization of eqn. (2). Through the standard 
Galerkin procedure of FEM [29], it with eqn. (3) can be discretized as one 
ordinary differential equations set 

 QKuuM   (4) 

where M and K are global mass and stiffness matrices respectively; 
T

N ],,,[ 21 uuuu  , a function of time t and z, is generalized displacements 

vector of N nodes including two end nodes. For one certain node, its 
generalized displacement consists of its displacement and rotation, i.e. 

 ],[ iii v u   (5) 

with iv and i   being displacement and rotation of th node, respectively. 

and are assembled by  local mass and stiffness matrices respectively.  One 
can find the details  on these local mass and  stiffness matrices and  how  to  
assemble them to global ones as well as how to get  i n  [29 , 30] .  Eqn .  (4)  is  
solved by the generalized-α method, an extension version of HHT-α and 
WBZ-α  method,  having the  second-order accuracy and being unconditional 
stable if its parameters are set appropriately [31]. 
     The loading here includes pressure and frictional force, the same as proposed 
by Paidoussis [4, 16] except the ignored axial force, i.e. 

  
C jijiji dlnpq )(  . (6) 

where qi is the loading in eqn. (2) with i = x, y, τij is the deviatoric stress tensor 
and nj refers to the normal vector of the cylinder, and C is its lateral perimeter. 

4 Results and discussion 

For convenience, following Paidoussis [4, 16], we define dimensionless velocity 
υ, the mass ratio β, the dimensionless time τ and displacement by 
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where υ0 and ρ are the flow inlet velocity and fluid density respectively; L, ρb, At, 
and Ae are respectively the length, density, total cross-sectional area and effective 
cross-sectional area of the cylinder; dx and dy are the dimensionless displacement 
in x direction and y direction respectively with ux and uy being the corresponding 
displacement. Note that Ae is actually A in eqn. (2) and different from At since the 
cylinder is hollow. 
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     The simulation parameters are shown in table 1, in which case 1 is related to 
the case where only one direction vibration is calculated and case 2 to the other 
one where the vibrations in two directions are both calculated. For different 
cases, the cylinder is located initially at its equilibrium state and only induced by 
fluid flow to vibrate. By increasing or decreasing stiffness of the cylinder, we 
can make the dimensionless velocity smaller or lager and thus focus on the effect 
of the latter for generalizing, by which the effect of the former can be easily and 
clearly concluded. In this paper, the effect of β is not discussed. 
     Fig. 3 shows the displacement histories of two cross sections of the cylinder 
in x direction for the case 1, where ζ is dimensionless length based on the 
diameter of the cylinder and ζ = 0, 20 means two ends of the cylinder 
respectively. These two cross sections have the almost most maximum 
displacement and thus the following results also focus on them. 
     It can be found from fig. 3 (a) that the oscillation amplitudes are small, about 
maximum 0.01D with D diameter of the cylinder, when the dimensionless 
velocity υ equals 6.0173. This kind of oscillation is almost around the initial 
equilibrium position of the cylinder and attributed to the turbulence as we 
mentioned above and called sub-critical vibration. However, when υ is increased 
to 8.8997, or equivalently the stiffness of the cylinder is decreased, as shown in 
fig. 3 (b) one dramatic vibration is induced distinct from that shown in fig. 3 (a). 
At the beginning, the oscillations with small amplitudes are induced till τ = 1.0 as 
they are when υ = 6.0173, after which the displacements rapidly increase to a 
large value about maximum 0.6D within a short time and then will never do 
visibly. Consequently, the cylinder oscillates around a new position with an 
approximate maximum amplitude 0.025D lager than that when υ = 6.0173. It 
indicates that the cylinder is buckled at a new position. This phenomenon is one 
type of fluidelastic instability and in particular discussed for the cylinder 
subjected to axial flow by Paidoussis [4, 7, 16]. 
     We now move on to the case 2, where the cylinder can vibrate in two 
directions. Fig. 4 shows the vibrations of two same selected cross sections in two 
directions when υ = 6.0173. The oscillating amplitudes in two directions are also 
small, about maximum 0.05D in x direction and 0.03D in y direction. No matter 
in x and y directions, the oscillating is almost around the initial equilibrium 
position of the cylinder. This is similar to that shown in fig. 3 (a) and also this 
oscillation should be related to the turbulence. Nevertheless, when υ = 8.8997, 
the difference between case 1 and case 2 is apparent. Fig. 5 shows the vibrations 
in two directions when υ = 8.8997. Initially, the cylinder vibrates around its 
equilibrium position and then deviates rapidly from this position. The deviation 
is followed by an oscillation with the amplitude approximately maximum 0.1D 
in x direction and 0.2D in y direction both much larger than that after rapid 
increasing of the displacement shown in fig. 3 (b). This oscillation is different 
from the initial oscillation that should be only about 10-3 to 10-2D [16] and thus 
could not be mainly associated with the turbulence but due to another kind of 
fluidelastic instability called flutter. Comparing fig. 3 (b) and fig. 5, one can 
further find that the time of the displacement rapidly increasing onset in the 
former is after that in the latter, together with the fact that the buckling usually 
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occurs at a smaller value of the dimensionless velocity than the flutter [4, 16] 
concluding that the FSI system here is more stable when the cylinder is 
constrained only to vibrate in one direction than when it can vibrate in two 
directions. 
 

 
(a) 

 
(b) 

Figure 3: Dimensionless x-displacements of two cross sections of the 
cylinder in the case 1 when (a) υ = 6.0173 and (b) υ = 8.8997. 

     The buckling is not predicted by Paidoussis theory [4] for his considering a 
specific model similar to the model in this paper, but by recent nonlinear theory 
[32], the buckling is possible for a similar clamped-clamped system. The value 
8.8997 of the dimensionless velocity for buckling (in case 1) or flutter (in case 2) 
is different from that of fluidelastic instability onset suggested by Modarres-
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Sadeghi et  π  for buckling and 21.6 for flutter. It should 
be noted that the numerical method in this paper is much difficultly applied to 
predict the value of the dimensionless velocity after which the fluidelastic 
instability occurs, since it is impossible to simulate sufficient cases for different 
dimensionless velocities due to long time cost in numerical simulation. The 
value 8.8997 may not be one of fluidelastic instability onsets for the FSI system 
in this paper. Another reason for this difference should be attributed to the 
difference between the FSI systems in this paper and [32]. However, the results 
here are qualitatively consistent with those in [4, 16, 32]. 
 

 
(a) 

 
(b) 

Figure 4: Dimensionless (a) x-displacements and (b) y-displacements of two 
cross sections of the cylinder in the case 2 when υ = 6.0173. 

 al.  [32], which is about 2
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(a) 

 
(b) 

Figure 5: Dimensionless (a) x-displacements and (b) y-displacements of two 
cross sections of the cylinder in the case 2 when υ = 8.8997. 

     In summary, for the FSI system in this paper, the numerical results shows that 
only small oscillation of the cylinder is induced when the dimensionless velocity 
is small enough while the fluidelastic instability occurs when it is large enough. 
However, due to the fluidelastic instability, the cylinder is buckled when it can 
vibrate only in one direction and oscillates with large amplitude when it can 
vibrate in two directions. This is qualitatively consistent with the conclusions of 
[4, 16, 32]. By the definition of the dimensionless velocity (see eqn. (7), it is can 
be concluded that when the stiffness is kept large enough, only weak oscillatory 
is induced by the flow, however, the FSI system becomes unstable if it is small. 
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