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Abstract 

The performance of two pressure-velocity coupling strategies, associated with 
the primitive variable solution of incompressible Newtonian fluid with the 
meshless Local Radial Basis Function Collocation Method (LRBFCM), is 
compared with respect to computational efficiency, stability, accuracy and 
spatial convergence. The LRBFCM is structured with multiquadrics on five 
noded support domains. The explicit time stepping is used. The Backward-
Facing Step problem (BFS) has been selected as a benchmark problem, 
previously tackled by several numerical methods. The semi-local fractional step 
method (FSM) and completely local pressure-velocity couplings (LPVC) are 
compared. The numerical results are validated against previously published data. 
The results are represented and compared in terms of a convergence plot of the 
reattachment position. We show that both approaches provide reasonable results; 
however, LVPC is less computationally complex and less stable in comparison 
to FSM.  
Keywords: meshfree methods, radial basis functions, collocation,  
convective-diffusive problems, adaptation, refinement, melting, fluid flow, 
Newtonian fluids. 
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1 Introduction 

The meshless methods belong to a class of numerical methods where an 
arbitrarily distributed set of nodes, without any additional topological relations 
between them, is used. There exist several meshless methods [1–5]; however, 
this work is focused on one of the simplest classes of meshless methods in 
development today, the point interpolation Radial Basis Function Collocation 
Method (RBFCM) [6]. In the present paper we use a local variant of RBFCM 
[6], the Local Radial Basis Function Collocation Method (LRBFCM). The main 
advantage of the local approach is in consideration of the multivariate data fitting 
and calculation of spatial derivatives through a local support domain. 
Consequently, the computational basis is simplified, since several small systems 
of algebraic equations are solved instead of a global algebraic equation system. 
Such approach has been already successfully applied to several thermo-fluid 
situations, ranging from the basic diffusion problems to complex highly non-
linear and coupled technologically relevant situations [5, 7–14]. Important 
features of meshless methods represent straightforward application of 
dynamic node distribution [15], and stable behaviour on non-regular node 
distributions [11]. 
     This paper is focused on application of LRBFCM in fluid mechanics, more 
precisely, in channel flow. In our past publications we have already 
demonstrated the applicability of LRBFCM in fluid flow computations. The 
LPVC (in the context of meshless methods) was for the first time introduced in 
[10] and further investigated regarding more complex physical systems in  
[12, 16, 17], where only closed and impermeable domains have been considered. 
The open domain problems were dealt with (in the context of meshless methods) 
the FSM approach in [14, 18].  
     In this paper we compare the performance of LPVC and FSM in open domain 
problems, which seems to appear more demanding than the closed ones. The 
well-known Backward-Facing Step problem [19–25] (BFS) is considered since 
its solution is well coped with in the literature, and is at the same time complex 
enough to challenge the proposed numerical techniques. 
     The principal message of the present paper is a quantitative comparison of 
two meshless based numerical procedures that differ only in pressure-velocity  
coupling strategies. The Chorin’s FSM [21] is semi-global, and as such requires 
solution of a global system of algebraic equations for pressure, while LPVC is 
completely local. Both strategies show reasonably good convergence behavior as 
well as good agreement with already published data [22].  

2 Problem definition 

The BFS problem of the laminar incompressible Newtonian fluid flow over a 
backward-facing step in two dimensions is considered. It represents a standard 
test for investigating the flow separation and reattachment. It has been already 
used by numerous researchers as a benchmark test for various numerical 
methods [19–25]. The domain of the problem is characterized by a planar 
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channel with sudden change of the geometry (Figure 1), which governs the flow 
separation, and generation of several re-circulating zones downward the step, 
described by positions  1 2 3, ,x x xp p p . The flow is modelled by the Navier 

Stokes equations  

 0 v , (1) 

  ( ) P
t

  
     


v

vv v , (2) 

with  , , , , andx yt v v P  v standing for time, velocity, pressure, viscosity and 

density, respectively. The Cartesian coordinates are used, and the position vector 

is defined as  ,x yp pp . The rectangular domain is normalized to height 

2 1h  . Beginning of the computational domain is considered at the location of 

the step, where the flow enters the channel. The step height is set to h . The 

channel length is set to 30h . The flow dynamics is characterized by the 
Reynolds number (Re), defined as 

 
0 2

Re
v h


 , (3) 

with 0v  standing for the amplitude of the inlet velocity. At the inlet, the fully-

developed velocity profile is set [22] 

    0 0.5 ;0.0 0.5x y y y yv p v p p p    . (4) 

     At the outlet boundary, the Neumann boundary conditions for velocity 
components are prescribed and are all set equal to zero. At the walls, non-
permeable and no-slip conditions are used. The schematics of the computational 
test are represented in Figure 1. 

 

Figure 1: Problem schematics of the backward-facing step. 
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3 Solution procedure 

A general idea in the local meshless methods is the use of local sub clusters of 
domain nodes, named local support domains, for the approximation of the fields. 
Complementary to the selected support domain, an approximation function is 
introduced as a sum of weighted basis functions 

 1

( ) ( ),
BasisN

n n
n

 


 p p  (5) 

where , , andBasis n nN    stand for the approximation function, the number of 

basis functions, the approximation coefficients, and the basis functions, 
respectively. The basis could be selected arbitrarily (monomials, radial basis 
functions, …). In this paper, Hardy’s Multiquadrics (MQs), 

 
      2/ 1,n n

n C     p p p p p  (6) 

with C  standing for the free shape parameter of the basis function, are used. 

MQ’s are selected. By taking into account all support domain nodes and equation 
(5) the approximation system is obtained. In this paper we use collocation (the 
number of support nodes is the same as the number of the basis functions). An 
arbitrary spatial differential operation L  can be applied on the approximation 
function in the following way  

 
 

1

( )
BasisN

n n
n

L L 


 p p  (7) 

     In general, the system (5) has to be solved only when the support domain 
topology changes and therefore the computation can be optimized by computing 

1Ψ  in a pre-process. Furthermore, the computation of the coefficients and the 
evaluation of differential operators can be combined. All information about the 
numerical approach and the local nodal topology can be stored in a predefined 
vector, which has to be re-evaluated only when the topology of the nodes 
changes. The differential operator vector L

m   is introduced as 

 
 1

1

( ) ( ) .
N

L
m nm n

n

L 



  p p

 

(8)

 
     The introduced formalism holds in general and therefore the general notation 
for partial differential operator  L  is used. However, in the present work, only 

operators   and 2  are employed 
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     The structured formulation is convenient since most of the complex and CPU 
demanding operations are performed in the pre-process phase. For all inner 
temporal loop operations only N floating point operations (FLOPS) are needed 
for evaluation of an arbitrary partial differential operator. The implementation of 
the Dirichlet boundary condition is straightforward. In order to implement 
Neumann and Robin boundary conditions, special interpolation is needed. In the 
present numerical framework, the computation of Neumann and Robin boundary 
conditions can be simplified through the use of the differential operator vector. 
Consider Neumann boundary condition 

 
,BCa b

  
 

n
 (11) 
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SubN
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



 


 






 n

n
 (12) 

where 0  stands for the boundary node. Equation (12) simplifies to Neumann 

boundary condition computation if b  is set to zero. Such approach makes the 
Neumann and the Robin boundary condition computation straightforward and 
CPU effective. Again, only N  flops are needed to evaluate it, without any kind 
of special computational treatment on or near the boundaries.  

3.1 Local pressure-velocity coupling  

A two-level explicit time stepping is used, thus equation (2) is discretized as 

   0 0 0 0 0 0ˆ ( )
t

P  



        v v v b v v , (13) 

with t  standing for time step, index zero marks the initial time step values and 

v̂  stands for intermediate velocity. Equation (13) does not take into account the 
mass continuity and therefore the pressure and the velocity corrections are added  

 1ˆ ˆ ,m m  v v v
    1ˆ ˆ ,m mP P P  


 (14) 

where , andm v P


 stand for pressure velocity iteration index, velocity 

correction, and pressure correction, respectively. By combining the momentum and 
the mass continuity equations, the pressure correction Poisson equation emerges  

 2ˆ .m t
P




  v


 (15) 
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     Instead of solving the global Poisson equation problem, the pressure 
correction is directly related to the intermediate velocity divergence 

 2 ˆ .mP
t


 


v


  (16) 

     The proposed assumption enables direct solving of the pressure velocity 
coupling iteration. It is thus very fast due to only one spatial discretization 
operation needed in each node to evaluate the new iteration pressure and the 
velocity corrections. With the computed pressure correction, the pressure and the 
velocity can be corrected as  

 1ˆ ˆ ,m m t
P


 
  v v


        1ˆ ˆ ,m mP P P  


 (17) 

where   stands for the relaxation parameter. The iteration is performed until the 

criterion ˆ· V v  is met in all computational nodes. After successful pressure-

velocity iteration, the algorithm continues with the next time step. The LPVC 
approach is similar to the artificial compressibility method (ACM), which has 
been recently under intense research in connection with Finite Volume Method 
[26, 27] and in connection with Finite Element Method [28]. A similar approach, 
in the framework of the FDM, is SOLA algorithm [29]. However, the proposed 
LPVC approach retains the correct time transient which is, in general, not the 
case in SOLA and ACM approaches.    

3.2 Fractional step approach 

The pressure is omitted from temporally discretized form of momentum equation 
in FSM approach 

   0 0 0 0 0ˆ ( )
t  



       v v v b v v . (18) 

 
     Again, the equation (18) does not take into account the mass continuity. In a 
similar manner as in 3.1, the pressure Poisson equation is constructed. 

 
2 ˆ

t
P




  v . (19) 

     The equation (19) is directly solved in the FSM approach. However, the 
locality of spatial discretization simplifies the computations to solution of a 
sparse system of algebraic equations. With the solved pressure, the intermediate 
velocity is corrected as 

 ˆ
t

P



  v v . (20) 
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     In FSM, the internal iterations are not performed. The computed pressure and 
corrected velocity are therefore new values and simulation proceeds to the next 
time step. FSM does not provide a correct time transient in general.  

4 Results 

The results are presented in terms of velocity field plot and velocity, pressure 
and shear stress cross section profiles for Re 800  case. The convergence is 
monitored at the reattachment position 1xp  with respect to the number of 

computational nodes, ranging from 150x40 to 325x110. The reattachment 
position is defined as a point where the wall shear stress equals zero 

 0x

y

v

p
 


 

  (21) 

     Steady state velocity field is represented in Figure 2. The x axis is on the plot 
limited to 10 (for the sake of better visibility), although the computations are 
performed on domain with length 15.  
 

 

Figure 2: Problem schematics of the backward-facing step. 

 
     All computations were performed with time step 310t   , relaxation 
parameter 710  and MQ shape parameter 32C  , normalized to the 

maximum distance between the nodes within the support domain.  
     A comparison of the results is done on velocity cross-section profiles with the 
already published data [22], presented as “Gartling” in Figures. Two different 
cross-sections are examined, at 7xp  and 15xp   (Figure 3). In Figure 4, the 

shear stress profiles at the bottom and the top walls are represented. A good 
agreement is achieved in all analyses. Finally, the convergence plot for both 
meshless based solutions is represented in Figure 5. Both solution procedures 
converge at the same rate with minimal differences. However, it can be seen that 
LPVC develops minor instabilities in the convergence plot. The behaviour is to 
be investigated in our future work. Our preliminary analyses show that the 
instabilities can be mitigated by usage of an additional stability term in pressure 
correction.  
 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

px

p
y

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 74, © 201  WIT Press2

Advances in Fluid Mechanics IX  125



 

Figure 3: Comparison of vertical velocity profiles at 7xp   and 15xp  . 

 

Figure 4: Comparison of shear stress profiles at the top and at the bottom wall. 

 

Figure 5: Convergence plot for reattachment position 1xp  with respect to the 

number of the nodes DN . 
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5 Conclusions 

Two different strategies for pressure-velocity coupling in meshless solution of 
laminar, incompressible Newtonian channel flow are presented. Both strategies 
provide good results. Comparison with published data shows good accuracy of 
both presented methods. The semi-local FSM behaves more stable as the LPVC. 
The main advantages of the LPVC approach are: ease of implementation, 
straightforward parallelization, and low computational cost. On the other hand, 
the global FSM pressure-velocity strategy does not require a consideration of any 
extra relaxation parameter, at the cost of higher computational complexity. The 
FSM approach also shows more stable convergence behavior. The main 
drawback of FSM as compared to the LPVC is global solution of pressure 
equation. First, the global system has to be constructed. This is not problematic 
as long as the static node distribution is used, as it can be done in preprocess. 
The solution of the system remains the task to be done in each time step, 
however. With proper iterative algorithms and pre-conditioning this overhead 
can be minimized. Still, the complexity is proportional to  DO N , while for 

LPVC this step is omitted. Besides a higher computational complexity, the 
important factor is ease of parallelization since the multicore computers are 
common today. The LPVC is almost ideally parallelizable as it is completely 
local. There is minimal communication with other parts of the computational 
domain. For the shared memory systems the OpenMP parallelization is trivial 
and extremely effective [30]. At the cost of computational complexity, however, 
the FSM offers more stable numerical scheme. The FSM also does not provide a 
proper time transient. These conclusions are preliminary and will be further 
investigated and supported with more analyses in the archival version of the 
present paper, that will be submitted to EABE.  
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