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Abstract

A standard gauge velocity field is introduced into the constant density Navier–
Stokes equations and extended to treat fluid turbulence. Some of the elementary
properties of such gauge fields are explored and relationships between them
established. In particular, the gauge fields separate out the irrotational motion
from the vortical motion. An example that describes the inactive component of
a turbulent flow is presented.
Keywords: gauge fields, turbulence models, energy estimates.

1 Background

Write the field equations for the flow of a constant density viscous fluid in the
standard form:

∂vi
∂xi

= 0;
∂vi
∂t

+
∂

∂xj
(vivj) +

∂P

∂xi
= ν

∂2vi
∂xj ∂xj

+ fi (1a, b)

where P (x, t) is the pressure field normalized by the constant fluid density.
Equations (1a,b) define the field (v, P ) in which v(x, t) is the instantaneous
velocity field at location x and time t. f(x) denotes a time independent body
force in equation (1b). Herein, the kinematic viscosity coefficient, ν, is taken to
be constant. To be useful these equations must possess a unique regular solution
for meaningful boundary conditions; and the existence of such a solution is
assumed in the following discussion. Certain additional assumptions must be made
before equations (1a,b) can be adopted to describe the turbulent flow of a viscous
fluid. These assumptions include the need for the turbulent velocity and pressure
fluctuations to be continuous and have bounded energy. It is also required that all
velocity-related correlation functions be bounded. As is standard, the divergence of
equation (1b) produces a Poisson equation to compute the pressure field directly:

∂2P

∂xi ∂xi
=
∂fi
∂xi

− ∂2

∂xi ∂xj
(vivj) (1c)
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since, as stated above, it is assumed that all required derivatives exist. Some
regularity results for the Navier–Stokes equations are given in Seregin [1].

Let the Reynolds decomposition be expressed in the standard form:

v �→ V + u; V = E(v) and E(u) = 0 (2)

if u(x, t) is the fluctuating velocity field and V(x, t) the corresponding mean
velocity. Equation (2) implies that the kinetic tensor, R = v ⊗ v will be
decomposed as R �→ R + R in the mean motion equations provided that
R = V ⊗ V denotes the mean kinetic tensor. R(·) in the above represents an
appropriate mean value operator whose specific form is not of significance for the
present discussion and R = E(u ⊗ u) is referred to as the Reynolds tensor. As is
well known, introduction of the Reynolds decomposition renders equations (1a,b)
unclosed and hence unsolvable without an additional statement in the form of a
turbulence model: χ(R,V,α) = 0 (with a vector, α, of scalar constants). The
constraints that must be placed upon such models, are not the present interest —
for some of which see the discussion in Moulden [2]. Details of specific turbulence
models are given in such references as Chen and Jaw [3], Wilcox [4] as well as in
Launder and Sandham [5]. See also the discussion in Gatski [6].

Start by noting some fundamental properties of equations (1a,b) that will be
required for subsequent developments:
a) As is standard, equations (1a,b), being based upon Newtonian mechanics, are
covariant under the Galilean group, G a:

x∗ = Q[x + VT t+ x0]; t∗ = t+ t0

which implies a velocity transformation of the form v∗ = Q [v + VT ]. Here,
Q ∈ SO 3 is a constant coordinate rotation while VT is the constant Galilean boost
velocity while x0 and t0 are constant space and time translations. The pressure
field is invariant across inertial frames. Finally, note that the spatial and temporal
gradients transform as:

∂(·)
∂x∗i

≡ Qij
∂(·)
∂xj

;
∂(·)
∂t∗

=
∂(·)
∂t

− (VT )k
∂(·)
∂xk

under the group G a. The Reynolds averaged equations, like the Navier–Stokes
equations, are fully covariant under the Galilean group.
b) Gurtin [7] gave a simple uniqueness result for the constant density Navier–
Stokes equations (1a,b) under the assumption that certain regularity conditions are
satisfied. In particular, that the norm of the stretching tensor D = sym(L) (if
L = ∇(v) is the velocity gradient tensor) must be bounded for all x, t of interest.
This constraint implies that D must have bounded eigenvalues: a condition related
to the requirements on the boundedness of the Reynolds tensor R. The theorem
of Gurtin [7] showed that the velocity field, v(x, t), must be unique but that the
pressure field has the uniqueness property only up to an arbitrary function of time:

P (x, t) �→ P (x, t) + P ∗(t)

say. This finding is nothing more than noting that the simple equality:

∂

∂x
P (x, t) =

∂

∂x
[P (x, t) + P ∗(t)]
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must hold for any bounded function P ∗ = P ∗(t), only. Most important for
practical applications is the velocity field uniqueness obtained from the theorem
of Gurtin [7] and this result will be required herein.

It will be found below that certain gauge transformations introduced in the
literature do not possess full Galilean covariance and so are not, to this extent,
consistent with the Navier–Stokes equations. Some applications of one such gauge
transformation will, however, be explored.

2 On the Reynolds decomposition

The instantaneous Navier–Stokes equations for constant density flow were
written in equations (1a,b) (and formally constitute a well posed problem
when appropriate boundary and initial conditions are appended: even though
certain issues relating to uniqueness and regularity remain unresolved). The
instantaneous kinetic tensor R = v ⊗ v, again normalized by the fluid density,
has been introduced in equation (1b). Being symmetric the kinetic tensor has real
eigenvalues one of which is λ = 〈v, v〉, the kinetic energy. It is assumed here
that the velocity field is regular in that all required derivatives exist. The same is
assumed of the pressure field.

With these definition in place the mean motion equations, corresponding to
equations (1a, b), can be written as:

∂V
∂t

+ div(R) + div(R) + ∇(P ) = ν∇2(V) + f; div(V) = 0 (3a, b)

when the velocity field v(x, t) has been decomposed in the form v �→ V + u with
|||u||| bounded. The corresponding equation for the fluctuating velocity, u(x, t), with
div(u) ≡ 0, is given as:

∂u
∂t

+ div[(V ⊗ u + u ⊗ V) + u ⊗ u − R] + ∇(p′) = ν∇2(u) (4)

since the body force has been restrained as f = f(x) only. Here the pressure field
is given the usual decomposition as P = P + p′. The standard evolution equation
for the Reynolds tensor R = (Rij) can be established from equation (4) and has
the form:

∂Rij

∂t
+ Vk

∂Rij

∂xk
+ Rjk

∂Vi
∂xk

+ Rik
∂Vj
∂xk

− ν
∂2Rij

∂x2k
= −Ψij (5)

(see, for example, Frost and Moulden [8]). The definition:

Ψij = 2νE
[
∂ui
∂xk

∂uj
∂xk

]
+

∂

∂xk
E(uiujuk) + ψij ≡ ET |ij + DF |ij + ψij

has been included in equation (5). In this equation ET denotes the turbulence
dissipation and DF the velocity diffusion term whose explicit form is not of
importance in the present context. As usual, turbulence models are required for
both of these terms. Finally ψij denotes the standard pressure fluctuation terms in
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the Reynolds stress equation:

ψij = E
[
∂(ujp′)
∂xi

+
∂(uip′)
∂xj

]
− E

[
p′

(
∂uj
∂xi

+
∂ui
∂xj

)]
(5a)

The velocity, v(x, t), is unique and, for a given mean value operator, E , so is
the mean motion V. Hence the fluctuations u(x, t), must also be unique along
with the Reynolds tensor R = E(u ⊗ u) again when determined from the unique
instantaneous velocity field defined by the Navier–Stokes equations. Under the
group G a the well known transformations:

V∗ = Q[V + VT ]; u∗ = Qu

hold (see Speziale [11] for a more general discussion of the invariance properties
of turbulence models). Only the mean velocity is influenced by the Galilean boost
velocity VT . In other words, the turbulent fluctuations are transparent to uniform
rectilinear motion of the inertial frame.

3 A gauge decomposition

The experimental work of Bradshaw [10] studied the inactive component of
the motion external to a turbulent shear layer. This motion contains irrotational
velocity fluctuations as well as pressure fluctuations and the two relate via a
Bernoulli-type equation. It is appropriate to introduce a gauge field ω(x, t) that
describes the irrotational motion. That is equation (1a), wherein div(v) = 0,
allows the specification of a gauge velocity field ω in the form: v �→ s + ω when:

div(v) = 0 ≡ div(s) + div(ω) (1d)

Since v is a function of space and time, it is assumed that s and ω have that same
dependence. The nature of the gauge field ω(x, t) is arbitrary within that constraint
and could be stochastic. At this point there is nothing to specify that the above
decomposition of the velocity field is unique. However, the variables s and ω can
at most, from equation (1d), differ by a divergence-free vector field. Clearly, when
ω = ∇(ϕ), for some scalar ϕ, the equality ζ = curl(v) ≡ curl(s) holds so that
the s(x, t) field captures all the vorticity in the flow. Now the condition div(v) = 0
provides the Poisson equation div(s) + ∇2(ϕ) = 0 and the ω field is potential
but not, in general, harmonic. Since the vector field curl(s) = ζ is known a (non-
unique) velocity field can be generated from it. There is non-uniqueness since any
β ∈ R such that curl(grad(β)) ≡ 0 can be introduced additively. However,
since div(v) = 0 has the physical meaning of mass conservation in constant
density flow, the specification of s(x, t) as the vorticity carrying component in
the decomposition v = s + ∇(ϕ) is unique: the scalar β can be combined with
ϕ. For a discussion of the more specific Stokes–Helmholtz decomposition, which
is not required herein, see Wu et al. [12]. Throughout it is assumed that all vector
fields are bounded and, in unbounded regions, tend to zero in the far field.

For the application in mind in section 5, it is appropriate to take the vector ω
to be potential since it can then represent the irrotational component of a turbulent
flow; both inside and outside of a turbulent shear layer. The appropriate boundary
conditions to be appended to the definition of the s and ω fields will be addressed
in section 5 for a specific flow field.
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From equation (1c) a Poisson equation for the pressure can be constructed, in
the usual way, to give:

∂2P

∂xi ∂xi
=
∂fi
∂xi

− ∂

∂xi
(sj + ωj)

∂

∂xj
(si + ωi)

once the s(x, t) and ω(x, t) variables are known.
The above gauge decomposition was introduced by Weinan E and Liu [13]

and discussed by Wang and Liu [14] in the context of numerical solutions of
the Navier–Stokes equations. The latter adopted a Crank–Nicolson, or backward
Euler, time discretization to construct a stable finite difference formulation. The
objective herein is to explore the possible use of such gauge fields in turbulent
flow: specifically to isolate the inactive motion from the vortical motion inside
a turbulent shear layer. As noted above, these irrotational velocity fluctuations
exist outside the shear layer and the ω field must also describe this external
motion. Various aspects of the physics of the inactive motion are discussed in
Bradshaw [10, 15] and Phillips [16] when restricted to the case of a statistically
stationary flow field. The present interest lies in exploring the extension to non-
stationary turbulent flows. In particular, evolution equations for the inactive motion
are required but now expressed in terms of the gauge fields.

From equations (1a,b) there is an evolution of the velocity field s(x, t) and a
specification of the gauge ω(x, t) given by the equations:

∂si
∂xi

= −∂ωi
∂xi

≡ − ∂2ϕ

∂xi ∂xi
;

∂si
∂t

+
∂

∂xk
[vivk] = ν

∂2si
∂xk ∂xk

+fi (6a, b)

if the variable ωi ≡ ∂ϕ/∂xi is potential, so that v = s + ∇(ϕ), then the pressure
field P (x, t) is determined retrospectively from the equality:

∂ϕ

∂t
+ P = ν

∂2ϕ

∂xk ∂xk
(7)

once the gauge field ϕ(x, t) has been determined. The regularity assumptions made
in the theory demand that both quantities, ∂ϕ/∂t and ∇2(ϕ), are bounded. The
pressure field is then well defined in equation (7). It hardly requires stating that
splitting the velocity v into a rotational and irrotational parts is artificial in the sense
that flow experiments do not allow this separation of the measured velocity field.
If equation (7) is looked upon as a non-homogeneous equation for the potential
ϕ(x, t) then the constraints to be imposed upon the function P (x, t), for a unique
solution to exist, must be specified. From Stakgold [17] a boundedness condition
on P (x, t) is required.

The potential ϕ can be obtained from equation (6a) in terms of a Laplacian
Green’s function when the s(x, t) field is known. If ϕ(x, t) is determined uniquely
from equations (6a,b) then the pressure P (x, t) follows uniquely from equation
(7). The classical vorticity transport equation for constant density fluid motion:

∂ζi
∂t

+ vj
∂ζi
∂xj

=
∂vi
∂xj

ζj + ν
∂2ζi

∂xj ∂xj
+ εijk

∂fk
∂xj

; ζ = curl(v) ≡ curl(s) (V )

does not make reference to the fluid pressure. It is consistent with this observation
that equation (7) determines the fluid pressure field from just the irrotational
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motion. Equation (V) is covariant under G a since the transformation ζ∗ = Q ζ
holds under that group.

Consider the Galilean transformation applied to the gauge decomposition
introduced above when it is required that:

s∗ = Q[s + VT ] and ω∗ = Q ω ⇒ |||ω∗||| ≡ |||ω|||
in addition |||s∗||| 2 ≤ [|||s||| + |||VT |||

]2
as a bound on the vector s∗(x∗, t∗): a bound that

must be boost velocity dependent. When ω is potential there is the transformation:
∇∗(ϕ∗) = Q ∇(ϕ) under G a so that |||∇∗(ϕ∗)||| = |||∇(ϕ)|||. It should be noted
that the pair of equations (6b,7) are not Galilean covariant under boosts since the
transformed equation (6b) has the form:

∂si
∂t

+
∂

∂xj
(vivj)

[
+(VT )j

∂ωi
∂xj

]
= ν

∂2si
∂xj ∂xj

+ fi (Ga)

while equation (7) transforms to:

∂ϕ

∂t

[
−(VT )k

∂ϕ

∂xk

]
+ P = ν

∂2ϕ

∂xk ∂xk
(Gb)

to demonstrate the lack of Galilean covariance in the gauge transformation: the
terms in brackets in equations (Ga,b) destroying the covariance. The equations
(6b,7) are, however, covariant under Galilean rotations. Equation (6a) is fully
Galilean covariant. Equations (Ga,b) do not feature in the following discussion
but must be recalled when transferring to a moving inertial frame.

4 The gauge Reynolds decomposition

Introduce a Reynolds decomposition into equations (6a,b) by specifying that:

s �→ S + r; ϕ �→ Ψ + φ

where S = E(s) and Ψ = E(ϕ). The vorticity field ζ(x, t) = curl(s) has two
components: curl(S) and curl(r); the latter associating with the rotational part of
the turbulent fluctuations. Given this decomposition, equation (6a) splits into:

∂Si
∂xi

= − ∂2Ψ
∂xi ∂xi

;
∂ri
∂xi

= − ∂2φ

∂xi ∂xi
(8a, b)

as statements of mean and fluctuating mass invariance in the current variables.
Similarly equation (7) yields the pair of equations:

∂Ψ
∂t

+ P = ν
∂2Ψ

∂xi ∂xi
;

∂φ

∂t
+ p′ = ν

∂2φ

∂xi ∂xi
(9a, b)

for the mean and fluctuating pressure fields when the potentials φ and Ψ are
known. In addition, there is: E(p′v) ≡ E(p′r)+E(p′∇(φ)). Hence the component
E(p′∇(φ)) depends only on the potential φ(x, t). The component E(p′r), if it
exists, is an interaction of the irrotational pressure fluctuations with the vortical
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flow field. Finally, equation (6b) implies the following:

∂Si
∂t

+
∂

∂xk

[
Rik + Rik

]
= ν

∂2Si
∂xk ∂xk

+ fi

∂ri
∂t

+
∂

∂xk
[Viuk + uiVk + uiuk −Rik] = ν

∂2ri
∂xk ∂xk

the field r(x, t) being defined from equation (10b). Here R = E(u ⊗ u), the
original Reynolds tensor, relates directly to correlations of the (r, φ) fluctuations
through the above transformations. Explicitly there is:

R = P + 2E(r ⊗ ∇(φ)) + E(∇(φ) ⊗ ∇(φ)), where P = E(r ⊗ r)

Equation (8b) now gives the potential φ(x, t) uniquely from the Poisson Green’s
function in the form:

φ(x, t) = −
∫
D(ξ)

G(x, ξ)
[
∂ri(ξ, t)
∂ξi

]
dV (ξ) + Γ(x, t) (11)

where Γ(x, t) represents the contribution from the boundary conditions. The
corresponding time derivative can be obtained as:

∂φ

∂t
= −

∫
D(ξ)

G(x, ξ)
[
∂2ri(ξ, t)
∂t ∂ξi

]
dV (ξ) +

∂Γ(x, t)
∂t

(11a)

The domain of integration only extends over the support of the field r(x, t)
and that function must be such that the integrals in equations (11,11a) are
bounded. Given the value of ∂φ/∂t from equation (11a) the fluctuating pressure is
determined directly from equations (8b,9b). In both equations (11) and (11a), the
function r(x, t) is only non-zero in any vortical region, such as turbulence, that is
present in the domain of interest. The ∇(φ) term follows from equation (11) as:

∂φ(x, t)
∂xi

= −
∫
D(ξ)

∂G(x, ξ)
∂xi

[
∂rj(ξ, t)
∂ξj

]
dV (ξ) +

∂Γ(x, t)
∂xi

(11b)

for each component of x.
Similar statements hold for the mean motion potential Ψ(x, t) in equations (8a)

and (9a). That is, for example:

Ψ(x, t) = −
∫
D(ξ)

G(x, ξ)
[
∂Si(ξ, t)
∂ξi

]
dV (ξ) + Λ(x, t) (11c)

again with the integral taken over the support of the S(x, t) function. Derivatives
of Ψ(x, t) then follow as above.

The relationship between the different velocity decompositions that have been
introduced above needs to be clarified in order to establish the gauge Reynolds
decomposition equations. From the above definitions:

v = V + u = s + ω ≡ S + r + ∇(Ψ) + ∇(φ)
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It then follows from application of the operator E(·) that:

u = r + ∇(φ) and V = S + ∇(Ψ) (12a,b)

to define the fluctuating and mean velocity fields. Associated with these velocity
fields are the fluctuating and mean vorticity fields:

ζ′ ≡ curl(u) = curl(r) and ζ ≡ curl(V) = curl(S)

such that the r(x, t) and S(x, t) vector fields carry the vorticity of the turbulent
fluctuations and the mean motion respectively. The irrotational motion is described
by the mean, ∇(Ψ), and fluctuating, ∇(φ), potential fields. The vortical motion,
r(x, t) and S(x, t) act as sources for the inactive components φ(x, t) and
Ψ(x, t) in equations 8(a,b). The above Reynolds decomposition calls forth the
transformations:

S∗ = Q [S + VT ]; r∗ = Q r; ∇∗(Ψ∗) = Q ∇(Ψ); ∇∗(φ∗) = Q ∇(φ)

under the Galilean group.
Equation (10b) allows the construction of an equation for the Reynolds gauge

stress Pij = E(rirj) associated with the vortical component of the flow. This
requires the evaluation of correlations of the form:

E(u ⊗ r) ≡ E(r ⊗ r) + E(r ⊗ ∇(φ))

wherein the first term will, generally, predominate as discussed by Bradshaw [10].
Specifically, there is:

∂Pij
∂t

+ Vk
∂Pij
∂xk

+ Πij = ν∇2(Pij) − 2νE
(
∂ri
∂xk

∂rj
∂xk

)
(13)

where Πij = Σα=1,7Π
(α)
ij , with the individual contributions given as:

Π(1)ij = Pjk ∂Vi
xk

+ Pik ∂Vj
∂xk

; Π(2)ij = Vk E
[
rj

∂2φ

∂xi ∂xk

]
+ Vk E

[
ri

∂2φ

∂xj ∂xk

]

Π(3)ij =
∂Vi
∂xk

E
[
rj
∂φ

∂xk

]
+
∂Vj
∂xk

E
[
ri
∂φ

∂xk

]
; Π(4)ij = E

[
∂(rirjrk)
∂xk

]

Π(5)ij = E
[
rjrk

∂2φ

∂xi ∂xk
+ rirk

∂2φ

∂xj ∂xk

]
; Π(6)ij = E

[[
∂(rirj)
∂xk

]
∂φ

∂xk

]

Π(7)ij = E
[[
rj

∂2φ

∂xk ∂xi
+ ri

∂2φ

∂xk ∂xj

]
∂φ

∂xk

]
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If the correlations between the vortical and irrotational components are
neglected then the quantity Π in equation (13) reduces to: Π = Π(1) + Π(4)
only. Equation (13) then takes on the form:

dPij
dt

+Pjk ∂Vi
∂xk

+Pik ∂Vj
∂xk

+E
[
∂(rirjrk)
∂xk

]
= ν∇2Pij−2νE

[
∂ri
∂xk

∂rj
∂xk

]
(13a)

which can be compared to equation (5). It is seen that equation (5) contains the
pressure term ψij (given explicitly in equation (5a) ) which is absent from (13a).
This is due to the structure of the gauge decomposition revealed in equations
(9b) and (10b). The pressure field does, in this gauge formulation, only relate
directly to the irrotational part of the flow field. It can be noted that the linearized
compressible flow equations (see Goldstein [18], for example) contain a similar
splitting of the velocity field but with the possibility of vorticity production in
higher order terms. However, the present discussion is restricted to constant density
motion and, as such, there are no entropy changes to take into account (and no
pressure component in the Beltrami diffusion equation to consider). The limit
ρ → const of the compressible Navier–Stokes equations is not a trivial limit;
see the discussion in Schochet [19] for the special case of a baratropic fluid.
The relationship between the compressible and incompressible flow theories is
not direct.

5 An example: inactive motion

It is well established that not all velocity fluctuations in a turbulent shear layer are
vortical in nature. As mentioned above these irrotational velocity fluctuations, and
the associated pressure fluctuations, propagate outside the turbulent shear layers.
See the discussion in Bradshaw [10, 15] and Phillips [16]. The present interest
lies in adopting the gauge fields introduced above to discuss the physics of the
inactive motion both inside and outside a turbulent shear layer. Moyal [20] showed
that in wave number space the pressure associates with velocity components that
reside in the span of the wave number vector. A significant noise field arises in
high speed turbulent shear layers as discussed, for example, in Phillips [21] and
Tam [22] (with the latter showing photographs of Mach wave propagation external
to a supersonic jet flow).

Outside the shear layer the equality r ≡ 0 holds, but irrotational fluctuations
do exist in that region where the quantity ∇(φ) is non-zero. Phillips [16] took the
irrotational nature of the inactive motion (when statistically stationary) to imply
that it could be explained in terms of a potential. Hence, under these assumptions,
a solution of a Laplace equation was sought for that potential. The theory of
Phillips [16] gave a 1/x4 decay of the energy E(uiui) into the far field that
was confirmed by the experiments reported by Bradshaw [15]. However, such
a formulation does not allow the local time dependent external flow field to be
described. The equations developed above allow a more general description of the
irrotational motion.
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Equations for region (A):
Refer to Figure 1 when the equations for region (A) are given as:

∂Si
∂t

+
∂

∂xk
[Rik + Rik] = ν

∂2Si
∂xk ∂xk

∂ri
∂t

+
∂

∂xk
[Viuk + uiVk + uiuk −Rik] = ν

∂2ri
∂xk ∂xk

∂Ψ
∂t

+ P = ν
∂2Ψ

∂xi ∂xi
;

∂φ

∂t
+ p′ = ν

∂2φ

∂xi ∂xi

∂ri
∂xi

= − ∂2φ

∂xk ∂xk
;

∂Si
∂xi

= − ∂2Ψ
∂xk ∂xk

The body force f(x) has not been included in the present discussion. Equations
(11a,14e) allow the pressure fluctuations in region (A) to be given explicitly as:

p′(x, t) = −ν div(r) +
∫
D(ξ)

G(x, ξ)
[
∂2ri(ξ, t)
∂t ∂ξi

]
dV (ξ) − ∂Γ(x, t)

∂t
(15)

when div(r) is computed from equation (14b). Now it is found that the local
pressure fluctuations in region (A) depend upon the local value of div(r) and
an integral over the domain defined by the support of r. In addition, there is in
equation (15) a local contribution from the boundary conditions. This contribution
will vanish for steady flow. The mean pressure, both inside and outside the shear
layer, follows in the same way from equation (9a) when the gauge function Ψ(x, t)
is determined from equation (8a) and the function S(x, t) from equation (10a).
Equations for region (B):

The mean external flow is assumed to lack a vortical component so that the (B)
region flow is defined by the system:

V = ∇(Ψ); u = ∇(φ)

∂Ψ
∂t

+ P = ν
∂2Ψ

∂xi ∂xi
;

∂φ

∂t
+ p′ = ν

∂2φ

∂xi ∂xi

0 = − ∂2φ

∂xk ∂xk
;

∂Si
∂xi

= − ∂2Ψ
∂xk ∂xk

Note that equations (14c,d) and (16c,d) are identical so that boundary conditions
∇(φ) = 0 are specified at x2 = 0 and in the limit x2 → ∞ and a smooth
solution can be sought on the whole domain. Equations (14d) and (16d) determine
the fluctuating pressure field both inside, and external to, the turbulent shear layer
once the potential φ(x, t) has been determined. At the surface x2 = 0 there is
v ≡ 0 which implies that both equalities V = 0 and u = 0 must hold. It further
follows that r = 0 while ∇(φ) = 0 is also true on this surface. The condition
r = 0 also holds at the edge of the shear layer x2 = L. It is assumed that all
required fields are specified at the upstream boundary x1 = 0 (which is taken to
be some convenient origin for the computation as shown on Figure 1).
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Figure 1: Regions in the flow field near a turbulent shear layer.

Equation (15) also defines the pressure fluctuations in the region external to the
shear layer where, however, the local div(r) term is identically zero. Alternatively,
equation (16d,16e) define p′ = −∂φ/∂t directly when equation (11a) applies. The
integration is still over the support of the rotational motion but now the (x, t) values
refer to this external region. For steady boundary conditions, the intensity of the
pressure fluctuations external to the shear layer is given explicitly as:

E(p′ p′) =
∫
D

∫
D
G(x, ξ) G(x,η) E

[
∂2ri
∂t ∂ξi

∂2rj
∂t ∂ηj

]
dV (η) dV (ξ)

and a similar expression for the velocity correlation can be obtained from equation
(11b). That is, without the contribution for the boundary conditions the correlation:

E
(
∂φ

∂xi

∂φ

∂xj

)
=

∫
D

∫
D

∂G(x, ξ)
∂xi

∂G(x,η)
∂xj

E
[
∂rk
∂ξk

∂rm
∂ηm

]
dV (η) dV (ξ)

is obtained which, from the form of the Green’s function, varies like 1/x42 for
large distances from the shear layer. Pressure velocity correlations follow in the
same way and need not be written down.

6 Final remarks

It has been shown that a non-Galilean invariant gauge velocity field can be
defined for the Navier–Stokes equations when the fluid density is constant.
These gauge fields are obtained from well defined boundary value problems
and provide additional insight into the structure of the constant density Navier–
Stokes equations. Of course, there is greater algebraic complexity in the gauge
formulation. The decomposition has been illustrated with a discussion of the
inactive motion outside a turbulent shear layer.
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