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Abstract 

Corrections to the conventional two-fluid model equations  are briefly illustrated, 
showing the general expression of the two-fluid model equation without any 
restriction on averaging, the general expression of the interaction term with 
‘inside-out’ property, and the corrected two-fluid model equation with a new and 
novel term reflecting the ‘inside-out’ property of the interaction term.   
     On the basis of the corrected two-fluid model equation, several questions are 
stated and discussed for Euler–Lagrange type simulator with respect to the 
moving velocity of individual drop and fluctuating motion of drops, and new 
concepts for Euler–Lagrange and Euler–Euler type of simulators are proposed 
focusing on the fluctuating motion of drops, which is one of the representative 
phenomena in the dispersed multiphase flow. 
Keywords: fluctuating motion of drops, dispersion of drops, Euler–Lagrange 
type simulator, Euler–Euler type simulator. 

1 Introduction 

Recently, a flaw in the basis of the conventional two-fluid model equation based 
on volume-averaging was revealed [8]. It was shown that the restriction, that the 
control volume must be between the drop size and the scale of macroscopic 
variations, was unrealistic for treating multiphase flow with spatial variation of 
macroscopic properties, and the two-fluid equation has been derived without any 
restriction on averaging, by combining volume-averaging and time-averaging.  
The most important founding in the work is that the interaction term has “inside-
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out” property, which has been over looked for more than 40 years since the 
appearance of the two-fluid model equations based on volume-averaging [1,9].  
The “inside-out” property causes significant corrections to the conventional two-
fluid model equations. 
     This work comprises three sections.  In the first section, the derivation of the 
corrected two-fluid model equation is briefly illustrated.  In the second section, 
questions for the previous Euler–Lagrange type simulators are stated and 
discussed with respect to the moving velocity of each drop obtained in the 
simulator, and the contribution of fluctuating motion of drops to the macroscopic 
property of the multiphase flow.  In the third section, new concepts for Euler–
Lagrange type and Euler–Euler type simulators are proposed focusing on the 
contribution of fluctuating motion of drops on the controlling mechanism of 
spatial distribution of the dispersed phase.   

2 Revision for the two-fluid model equation [8] 

2.1 Interaction term without any restriction on averaging 

Supposing dispersed two phase flow, eqn. (1) was obtained by successively 
volume-averaging and time-averaging the Navier-Stokes equation for the 
continuous phase in an entire volume of the continuous phase in a control 
volume V . 
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     Here,  c
, uc , Pc  and τc  are density, velocity vector, static pressure and 

stress tensor, respectively, of the continuous phase.  A notation FV
SR,

 on the right 

hand side is a sum of forces acting on drop surfaces in the control volume , and 

notations q
Λ  and q

c  mean time-averaged values of physical quantity q  for total 

time length of averaging   and total time length during which the continuous 
phase covers the point of interesting c , respectively, as defined by eqns. (2) and 

(3). 

    




2

2

,
1

,

Λ
t

Λ
t

dttq
Λ

tq XX  (2) 

    
 c

dttqtq
c

c
,

1
, XX  (3) 

     A notation X  is a position vector and a notation  
c

dttq ,X  means time 

integral of  tq ,X  for duration when the point X  is covered by the continuous 
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phase.  A notation   in eqn. (1) is a local hold up of the dispersed phase defined 
as a ratio of d  to the total time-averaging duration  , where d  is a total tine 

duration during which the point of interest is occupied by the dispersed phase.  
Hence,  1 , in eqn. (1) is a local holdup of continuous phase.  Following 

relations hold, where suffices c  and d  mean continuous and dispersed phase, 
respectively. 
  dc   (4) 
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     A notation lim
0XV

 on the right hand side of eqn.(1) means to take a limit value 

when the control volume converges to a point X0.  Terms on the left hand side of 
eqn. (1) are given at a point X0 to which the control volume V converges.  The 
right hand side of eqn. (1) is the interaction term without any restriction on 
averaging.  Eqn. (1) shows that the interaction term in the two-fluid model 
equations based on time-averaging is time-averaged force acting on drop 
surfaces in an infinitesimal size of control volume. 

2.2 ‘Inside-out’ property of interaction term 

The value of 
 
 
 
for a control volume sufficiently smaller than a drop size was rigorously 
analysed for the dispersed two-phase flow with homogeneous size of drops with 
radius R , and eqn. (8) was obtained as a limit for the infinitesimal control 
volume.  
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     Here,   ,,: Rc XT  is defined by eqn. (9) below, where I  denotes the unit 

tensor:  A notation   ,,: RX  means a position in a spherical coordinate 

system   ,,r  with its origin at point X .  Notations               and              are  

       ,,:,,:,,: RRR
ccc P XIXX τT   (9) 

 

unit vector on the r -axis to the direction         and a duration in which the center 
of a drop with radius R  is in unit volume assigned at point X , respectively.  A 
notation       is the difference between time-averaged values of      at angular 
coordinates   ,  on the surface, which is                                  , and that at the   

same position in the bulk, which is        , as defined by eqn. (10), which was 
introduced to utilize the knowledge on the drag force, lift force and virtual mass 

       XTnXTnXT c
c

cc RRRR    ,,:,,,:,  (10) 

force.  The sum of them,              , is given by eqn. (11).  Knowledge on the drag 

force, lift force and virtual mass force can be applied to f T
d . 
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     To consider the first term on the right hand side of eqn. (8), the positions 
where the values of           and        are specified were exchanged.  That is; 
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     The last expression on the right hand side of eqn. (12) is the same as the 
conventional interaction term.  The intrinsic properties of the interaction term in 
the two-fluid model equations is visible in eqn. (8), which differs clearly from 
the conventional interaction term in its ‘inside-out’ property.   

2.3 Revised two-fluid model equation 

The ‘inside-out’ property can be treated by using Taylor expansion to shift the 
points where        and        are specified.  Upon neglecting higher order terms, 
eqn (13) was finally obtained. 
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     The first term on the right hand side of eqn. (13) is the same as the 
conventional interaction term.  Standard analyses of the drag force, lift force and 
virtual mass force for a single drop in a flow field can now be applied to             .  
     The second, third and fourth terms in eqn. (13) was introduced to compensate 
for the discrepancy between 
 

and the conventional interaction term    
V d

d Xf
X

T
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
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     The Z  axis in the second term on the right hand side of eqn. (13) is chosen to 
the direction of  , and  Xf T
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

d
 and  Xf T

0
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d
 are forces acting on the two 

hemispherical surfaces of the drop having positive and negative values of Z  
respectively.  The parameter c  represents the effects of the weight function, 
cos , in the surface integration over the hemisphere surface, and is between 0 
and 1.  This term becomes significant for flow having steep gradients of the local 
holdup and averaged velocity. 
     The third term on the right-hand side of eqn. (13) is similar to the result of 
Kolev [4] in rearranging surface integrals for two-fluid model equations based on 
volume-averaging, which is crucial to excluding local holdup from the 
differential operator   in the static pressure term in the two-fluid model 
equation. 
     The fourth term on the right hand side of eqn. (13) arises from the definition 
of the force acting on a drop, f T

d
, given by eqn. (11), since T c , which is the 

difference between time- averaged values of tensor, τIT ccc P  , on a drop 

surface and in the bulk of the continuous phase, was taken to define the force 
acting on a drop f T

d
.  This term makes a small modification the shear stress term 

in the two-fluid model equation. 
     Finally, the two-fluid model equation is given as eqn. (14).  

 
     

           
VZ

cRP
V

t

d

dd
c

c
c

c
c

c

d

d

ccc
c

cc
c

XfXf
gτ

f

uuu

TTT
00

111

11   

 
















 


 (14) 

     Eqn. (14) is derived without any restriction on averaging, to which the 
accumulated knowledge on the drag force, lift force and virtual mass force can 
be applied. 

3 Question for Euler–Lagrange type simulator 

In the preceding section, it has been revealed that the conventional two-fluid 
model equations based on volume-averaging passed over the “inside-out” 
property of the interaction term due to the restriction on the size of the control 
volume.  It has been also shown that we have eqn. (14) as the two-fluid model 
equation without any restriction on averaging, to which the accumulated 
knowledge on the drag force, lift force and virtual mass force can be applied.  It 
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is worth noting here that eqn. (14) is obtained by combining volume-averaging 
and time-averaging, and the result, eqn. (14), is based on time-averaging.  This 
means that we have to keep in mind that the averaged physical quantities in the 
two-fluid model equation are to be based on time-averaging.  In this section, 
several questions for the conventional Euler–Lagrange type simulators are made 
and discussed from a view point of macroscopic properties of gas-liquid 
multiphase flow. 

3.1 Over-view of dispersed two-phase flow and questions for Euler–
Lagrange type simulator 

In a bubble column operated in the recirculating turbulent flow regime, it is well 
known that the flow field in the columns is fully developed turbulent flow with 
distributed size of vortices up to the order of column diameter [3,7].  Bubbles are 
rising in highly turbulent liquid flow with considerable scale of fluctuating 
motion induced by the vortices.  The well-known parabolic distribution of gas 
holdup in bubble columns operated in this flow regime [3,7] has been a hot target 
for numerical studies, and has not been successively realized yet [10].  The 
reason why bubbles are gathering in the central region of the column may be 
attributed to the lift force, and almost all of the previous works have been 
focused on the force acting on a drop, such as Tomiyama coefficient for the lift 
force [5], the dispersion force [2], and so on.   
     In Euler–Lagrange type simulators, a trail of each drop is followed by an 
equation of motion for each drop, to which accumulated knowledge on the forces 
acting on a drop is applied.  The values of moving velocity of drops thus 
obtained are “averaged” values, because the flow field of the surrounding fluid 
described by the two-fluid model equation is averaged one.  Several questions 
arise here: What kind of “mean” value is the moving velocity obtained from the 
equation of motion? Can we ignore the contribution of fluctuating motion of 
drops to the macroscopic property of the multiphase flow? What kind of forces 
should be accounted on the equation of motion for a drop?  Let us discuss these 
questions next. 

3.2 Equation of motion for a drop 

The equation of motion for a drop is given by Newton’s law, which is a balance 
between the acceleration term and the sum of forces acting on the drop.  The 
force acting on an entire surface of a drop is the contribution of a tensor Tc  

acting on the drop surface, however, the sum of the drag force, lift force and 
virtual mass force is given by eqn (11) as  Xf T

0

d

 which is assigned for the 

contribution of T c  on the drop surface.  Hence, the contribution of 

        ,,,:,,: 000 nXTXTXT RRR c
c

cc   should be accounted in 

addition to the force  Xf T
0d , to account all the forces acting on the drop surface.  

That is; 
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     Here, 
dV  is volume of a drop and 

V d

dV  means an integration over V d .  

The force  Xf 0b  given by eqn. (15) is regarded as buoyancy force, because the 

second term on the right hand side of the last expression in eqn. (15) can be 
neglected comparing with the first term.  
     The accumulated knowledge on the drag force, lift force and virtual mass 
force tells that the sum of those forces can be expressed as a function of liquid 
velocity uc  and moving velocity of a drop up , as eqn. (16).  The function H  can  

  uuf T
pcd H ,  (16) 

be easily found in text books or literatures in this research field.  Since we have 
an intention to utilize the two-fluid model equation, which is described in terms 
of time-averaged physical quantities, together with eqn. (16), let us expect that 
eqn (17) hold for the time-averaged velocity field of liquid uc

c  and averaged 

moving velocity of a drop u p . 

  uuf T
p

c
d cH ,  (17) 

     Here,  Xf T
0


d

 is a sum of the drag force, lift force and virtual mass force acting 

on a drop defined by eqn. (11).  The averaged moving velocity of a drop u p  is 

regarded as moving velocity of a drop defined by eqn. (17) for the flow field of 
the time-averaged velocity of the continuous phase uc

c . 

     Now, we have eqn. (18) as the equation of motion for a drop. 

     gfuuu VHV
dt

d
ddpc

c
pdd   b,  (18) 

     Here, f b is buoyancy force acting on the drop.   

     It is worth noting here that the dispersion force [2] does not appear on the 
right hand side of eqn. (18) because it was introduced in modifying Reynolds 
stress in the second term on the left hand side of eqn. (14).  The term is 
acceptable in the two-fluid model equation, but does not appear in the equation 
of motion for a drop. 

4 Proposal for Euler–Lagrange and Euler–Euler types of 
simulators 

The second term on the left hand side of eqn. (14) can be expressed in terms of 
time-averaged velocity field of continuous phase by using    model, for 
instance, probably with the dispersion force.  The fifth term on the right hand 
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side of eqn. (14) cannot be treated at present due to the lack of knowledge, 
however, it should be resolved for the practical use sooner or later.  Let us skip 
to the utilization of eqn. (14) for the simulator of multiphase flow.   

4.1 Euler–Lagrange type of simulator 

Since the averaged moving velocity of a drop, u p , is regarded as moving 

velocity of a drop defined by eqn. (17) for the flow field of the time-averaged 
velocity of the continuous phase, the actual moving velocity of a drop, up , is 
given as eqn. (19). 

 uuu  ppp  (19) 

     Here, up  is fluctuating component of moving velocity of a drop induced by 
turbulent vortices in surrounding fluid, which should play a key role in the 
simulator to control the distribution of local holdup of the dispersed phase 
through dispersion phenomena of drops. 
     Eqns. (14) and (18), and eqn. (20) which follows are basic equations for the 
Euler–Lagrange type of simulator. 

      011 



uc
c

tc   (20) 

     Eqn. (20) is the time-averaged equation of continuity for the continuous phase 
[6].   

     Supposing that spatial distributions of uc
c

 and Pc
c
, and averaged moving 

velocity, u p , and position of individual  drop are known at time tt 1 , the 

spatial distributions of  uc
c1  at the next time step ttt 

1
 can be calculated 

from eqn. (14).  The position of individual drop at the next time step is given by 

adding  uuu  ppp tt   to the position vector of each drop, then the spatial 

distribution of   at ttt 
1

 can be obtained.  Then, the value of uc
c

 at 

ttt 
1

 can be calculated, and the value of u p  at the next time step ttt 
1

 

is given by eqn. (18).  The spatial distribution of Pc
c
 at the next time step are 

determined so that the spatial distributions of uc
c  and Pc

c
 satisfy both eqns (14) 

and (20).   
     How to give the value of the fluctuating component up  to each drop is not 
known at present, however the trial and error approach in the numerical 
experiments to realize the distribution of the dispersed phase seem to be useful to 
obtain effective suggestion for the fluctuating motion.  
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4.2 Euler–Euler type of simulator 

The contribution of fluctuating motion of drops to the controlling mechanism of 
the distribution of local holdup of the dispersed phase can also be treated by 
introducing dispersion coefficient in stead of fluctuating velocity.  Since the 

time-averaged velocity of the dispersed phase uc
c  includes contributions of both 

averaged moving velocity of drops u p  and dispersion of drops due to fluctuating 

moving velocity up , we have eqn. (21). 

     Dpd
d

uu    (21) 

     Here, D  is a dispersion coefficient of drops.  A notation q
d  means time-

averaged values of physical quantity q  for total time length during which the 

dispersed phase covers the point of interesting.   
     Equation of continuity for the drop phase time-averaged for the dispersed 
two-phase flow is obtained as eqn. (22) [6]. 

   0 
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     Introducing eqn. (21) into eqn. (22), eqn. (23) is obtained. 
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     Eqn. (24) also holds as the Navier-Stokes equation for the dispersed phase 
time-averaged for dispersed multiphase flow [6]. 
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     From eqns. (14) and (24), eqn. (25) is obtained. 
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     Here, the values of static pressure time-averaged for dispersed and continuous 
phases are assumed to be the same. 
     Eqns. (14), (17), (20), (23) and (25) are basic equations for the Euler–Euler 
type simulator.  Once we know the spatial distributions of time-averaged 

velocity of the continuous phase uc
c , the average moving velocity of a drop u p , 

time-averaged static pressure for the continuous phase Pc
c  and local holdup of 

the dispersed phase  , we can calculate the spatial distributions of them at the 
next time step, by using eqns. (14), (17), (20), (23) and  (25). 
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     Accumulated knowledge on the dispersion coefficient D  is poor at present; 

however, the trial and error approach in the numerical experiments to realize the 
distribution of the dispersed phase is an effective approach to investigate the 
fluctuating motion.  

5 Conclusion 

Corrections to the conventional two-fluid model equations have been briefly 
illustrated, showing eqn. (1) as the general expression of the two-fluid model 
equation without any restriction on averaging, eqn. (8) as the general expression 
of the interaction term with ‘inside-out’ property, and eqn. (14) as the corrected 
two-fluid model equation with a new and novel term comprising the product of 
the local gradient of holdup and the difference between the forces acting on a 
hemispherical surface of the drop cut by a plane perpendicular to the local 
holdup gradient[8].   
     Questions for the previous Euler–Lagrange type simulators have been stated 
and discussed with respect to the moving velocity of each drop obtained in the 
simulator and the contribution of fluctuating motion of drops to the macroscopic 
property of the multiphase flow.  It has also been shown in the discussion that 
the contribution of fluctuating motion of drops on the macroscopic properties of 
multiphase flow cannot be treated in the previous Euler–Lagrange type simulator 
because both the two-fluid model equation and the equation of motion for a drop 
are relations between time-averaged velocity field of surrounding fluid and 
averaged moving velocity of a drop.  
     Concepts of Euler–Lagrange type and Euler–Euler type simulators are 
proposed focusing on the contribution of fluctuating motion of drops to the 
controlling mechanism of spatial distribution of the dispersed phase.  It was 
shown that the fluctuating motion of drops, which cannot be treated in the two-
fluid model equation and the equation of motion of a drop, may play a key role 
in controlling the spatial distribution of local holdup of dispersed phase. 

Symbols 

D
:  dispersion coefficient of drops  sm

12   

f b
: force acting on drop surface due to tensor Tc time-averaged  

 for bulk of the continuous phase, which nearly equals to the  
 buoyancy force as defined by eqn. (15).  smkg

2  

f T
d : contribution of the difference between the values of Tc   

 at the drop surface and in bulk of the surrounding fluid, 
 on an entire surface of single drop, which is the sum of the  
 drag, lift and virtual mass forces for a single drop in  
 a flow field  smkg

2  
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f T
d

: contribution of T c
 on an entire surface of a drop, given  

 by eqn (19)  smkg
2  

f T
d : force due to T c

 acting on a hemispherical surface of  

 a drop with positive value of Z   smkg
2  

f T
d

: force due to T c
 acting on a hemispherical surface of  

 a drop with negative value of Z   smkg
2  

F
V

SR,
: sum of forces acting on drop surfaces in a control volume  smkg

2  

g : vector of gravitational acceleration  sm 2  

I : unit tensor    

  ,n : unit vector along the r  axis in spherical coordinate system  

 directed to   ,     

P : static pressure  Pa  

q : physical quantity 

r : radial coordinate in spherical coordinate system  m  

R : radius of a drop  m  

S : surface of a control volume  m2  

t : time  s  

Tc : tensor composed of static pressure and shear stress  

 tensor, defined as eqn. (9)  smkg 21    

T
c

: mean value of tensor Tc
 for duration Λ , at a fixed angular  

 coordinate on drop surface  smkg 21    

u : velocity vector  sm 1  

up : moving velocity vector of a drop  sm 1  

u p  averaged moving velocity vector of a drop, defined by eqn (26)  sm 1  

up  fluctuating moving velocity vector of a drop  sm 1  

V : volume of the control volume  m3  

V d : volume of a drop  m3  

X , X0 : position vector in Cartesian coordinate  m  

Z : coordinates in Cartesian coordinate system  m  

t : time step in numerical calculation  s  

 : local hold up of the dispersed phase, defined by eqn (8)    

 , : coordinates in spherical coordinate system  radian  
 XR : duration in which the center of a drop with radius R  is in unit  

 volume assigned at point X   ms 3  
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 : total duration for time averaging  s  

d : total time during which the dispersed phase occupies the  

 point of interest  s  

c : total time during which the continuous phase occupies the  

 point of interest  s  

 : density  mkg 3  

τ : shear stress tensor  Pa  

 
Suffixes and other notations 
c : continuous phase 

d : dispersed phase 
 : time-averaged value for total duration for time-averaging,   

c
: time-averaged value for duration c  

d : time-averaged value for duration d  
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