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Abstract 

This paper deals with a theoretical stability analysis of a flow-induced wave 
generated in a flexible web subjected to fluid flow in a narrow gap. The flexible 
web is subjected to both fluid flow and in-plane tensile force. The flow-induced 
wave occurs to the flexible web resulting from fluid-structure interaction 
between out-of-plane motion of the flexible web and the fluid flow. The effect of 
the fluid flow and tensile force on the stability of the wave is examined. The 
theoretical results show that traveling-wave type unstable wave occurs to the 
flexible web due to the fluid flow in the narrow gap, and clarify the dispersion 
relation of the flow-induced wave of the web, i.e., phase velocity (traveling-wave 
speed) and growth rate of the wave, which are as a function of the flow velocity 
and tensile force. The theoretical results are verified by experiments on the most 
unstable wave number and critical flow velocity. 
Keywords: flow-induced wave, flexible web, dispersion relation, fluid-structure 
interaction.  

1 Introduction 

In the manufacturing process of flexible materials, such as a paper, sheet and 
plastic films, the flexible materials are subjected to a fluid flow in a narrow gap 
for non-contact support and drying. However the interaction of the thin film with 
the fluid flow causes an unstable wave. The flow-induced wave reduces the 
process efficiency and generates noise, in some case, causes fatigue failure to the 
thin film.  
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     Up to this time, many studies on the stability of leakage-flow-induced 
vibrations and sheet flutter have been reported. Inada and Hayama [1, 2] studied 
leakage-flow-induced vibrations of translational one-degree-of-freedom system, 
and clarified the instability mechanism of these systems theoretically. Nagakura 
and Kaneko [3] examined the stability of a cantilever beam subjected to the 
leakage fluid flow by employing the modal analysis method, and they verified 
the theoretical results comparing with experimental results. 
     Some studies on the flow induced vibration and flow induced wave of a 
flexible sheet have been reported [4–9]. Chang and Moretti [8] studied flow 
induced vibration of free edges of thin films by using a traveling-wave analysis 
based on the incompressible potential-flow. In their study, previous studies of 
edge flutter on two-dimensional waves expands to a more realistic three-
dimensional problem, and the simple closed form solutions of the critical flow 
velocity are presented. Watanabe and Kobayashi [9] studied the stability and 
dynamic characteristics of a moving flexible sheet with shear fluid flow. In their 
study, unstable wave occurs to the flexible sheets as a type of traveling-wave due 
to the shear fluid flow.  
     This paper presents the theoretical stability analysis of the flow-induced wave 
generated in the web subjected to the fluid flow in the narrow gap. In the 
stability analysis, tensile force is applied to the web, and the web is subjected to 
air flow in a narrow gap. The analytical results show the stability and wave 
characteristics of the flow-induced wave, phase velocity and growth rate of the 
wave. 

2 Theoretical stability analysis 

2.1 Modeling and coordinate system 

Fig. 1 and Fig. 2 show a traveling wave motion and an analytical model of the 
web subjected to the fluid flow together with the stationary coordinate system 
xyz and geometrical parameters considered in this model. The web is set in the 
middle of the narrow gap filled with fluid and is subjected to the fluid flow in y-
direction. Tensile force is applied to the web. The equilibrium gap width in 
steady state is a constant, H0, and thickness of the web is h. The uniform tensile  
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Figure 1: Traveling wave motion generated in the web (thin film). 
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force per unit width S is applied in x-direction. The fluid flow and tensile force 
are crossed at a right angle. 
 

 

2.2 Basic equation of structural motion and fluid flow 

The equation of motion of the web subjected to the fluid flow is derived in terms 
of the transverse displacement w and with respect to the stationary coordinate 
system xyz as follows: 
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where E is Young’s modulus, sC and *E are the external and internal structural 
damping coefficients, respectively. f is fluid force acting on the web surface per 
unit area.  and h are the density and thickness of the thin film, respectively. 
     The equations of motion of the fluid flow around the web are derived by 
integrating the continuity and momentum equations of fluid motion over the gap 
width 0H as follows: 
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where V is mean flow velocity over the gap width between the web and side 
wall. 0V is steady flow velocity of the fluid flow in the narrow passage.  is fluid 

viscosity. sf and wf are fluid friction coefficients on the surface of the web and 

side wall, respectively, and are assumed to be obtained as follows [10]: 
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where the friction coefficients sf and wf depend on the Reynolds number Re and 

the roughness of surface H . The Reynolds number is defined as fHVD /Re  , 

where 02HDH  , f  is kinematic viscosity of the fluid and H  is roughness 

of the side wall respectively. 
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Figure 2: Analytical model of the flow-induced wave. 
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2.3 Wave equation 

In this section, a linear wave equation of bending wave motion of the web 
coupled with the fluid flow in the narrow gap is derived from the basic equations 
of motion of the web and fluid flow. 
     The gap width H  between the web and side wall is obtained using the steady 
equilibrium gap width 0H and transverse displacement w of the web as follows: 

 ).,,(),,( 0 tyxwHtyxH   (5) 

     Similarly, the flow velocity and fluid pressure are obtained by summation of 
the steady and unsteady terms as follows: 

 ),,(),( 0 tyvVtyV    (6) 

 ),,,()(),,( 0 tyxpyPtyxP   (7) 

where 0V  and v  are steady and unsteady flow velocities, and 0P  and p  are 

steady and unsteady fluid pressures, respectively. Here the unsteady fluid 
pressure is induced by the motion of the web. 
     Substituting eqn. (5), (6) and (7) into the basic eqn. (2) and (3), the basic 
equations of the fluid flow are linearized with respect to the unsteady terms as 
follows: 
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where each term is expressed by dimensionless parameters by defining the 
following quantities: 
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     Similarly, the dimensionless basic equation of the web is obtained from eqn. 
(1) using the dimensionless parameters as follows: 
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where f̂ denotes the dimensionless fluid force obtained from the dimensionless 

unsteady fluid pressure p̂ using following relationship: 

 ).,,(ˆ),,(ˆ TYXpTYXf   (12) 

     From these linearized equations, eqn. (8), (9) and (11), a linear wave equation 
of bending wave motion of the web coupled with the fluid flow is obtained as 
follows: 
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where  ,  and are defined by the following dimensionless parameters: 
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where is defined by the following dimensionless parameters: 
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     From eqn. (13), it is found that the wave equation is composed two fluid-
wave equations expressed by first and second-order differential equations and the 
structural wave equation derived from the equation of motion of the web. The 
first fluid-wave equation is derived from the inertia term of the basic equation of 
the web and the continuity equation of the fluid flow. The second fluid-wave 
equation is derived from the viscosity and friction loss terms of the basic 
equation of the web and the continuity equation of the fluid flow. 
     Moreover, in eqn. (13),   denotes a dimensionless parameter of the viscosity 

and friction loss of the fluid.   denotes a dimensionless parameter which has 

the effect of the fluid-waves on the structural wave of the web. If   is large, the 

fluid-waves are dominant compared with the structural wave traveling in the 
web. On the other hand, if   is small, the structural wave is dominant compared 

with the fluid-waves. Thus, it is found that the dimensionless parameter   is 

one of the most important parameter for the dynamic characteristics and stability 
of the wave. 

2.4 Dispersion relation and stability analysis 

In this section, the dispersion relation of the wave is derived from the wave 
equation, eqn.(13), to investigate the dynamic characteristics, phase velocity 
(traveling-wave velocity) and growth rate of the wave. The transverse 
displacement w of the web is expressed as follows: 
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     Substituting eqn. (16) into the wave eqn. (13), the dispersion relation of the 
wave is obtained as follows:  
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     The stability and dynamic characteristics of the wave generated in the web are 
dependent on the complex root, ̂  obtained from eqn. (17), where k/]ˆRe[ , 

real part of ̂  divided wave number k, is denotes the phase velocity of the wave. 
If k/]ˆRe[  is positive, the wave is forward wave which propagates in the same 

direction as the fluid flow, and if k/]ˆRe[  is negative, the wave is backward 
wave which propagates in the opposite direction as the fluid flow. 
Moreover, ]ˆIm[ , negative imaginary part of ̂ , denotes the growth rate of the 

wave. If ]ˆIm[  is positive, the wave grows exponentially in time, that is, an 

unstable wave occurs, and if ]ˆIm[  is negative, the wave is stable. 

3 Analytical parameters 

Table 1 shows parameters used in the calculation for the stability analysis. These 
parameters correspond to the experimental parameters used in the other 
experimental study. In the calculations, the web is thin film and is made of PET, 
and the fluid in the gap between the web and side wall is air. Moreover, the 
external and internal structural damping coefficient are assumed sC = 10.0 Ns/m3 

and *E = 1.0×103 Ns/m2. In this conditions, dimensionless parameters are 

 =2.46×10-1, sĈ = 1.65×10-2,  = 9.01×10-5 and Ŝ 2.40×103. 

Table 1:  Parameters used in the calculation. 

Material of the web PET Tensile force S [N/m] 50 ~ 200 

Fluid Air Young’s modulus E [Pa] 3.0×109  

Gap width 0H [m] 5.0×10-3 Web density  [kg/m3] 1.4×103  

Web width L [m] 0.3 ~ 0.6 Fluid density f [kg/m3] 1.1  

Web thickness h  [m] 16.0×10-6 Fluid viscosity  [Ns/m2] 18.2×10-6  

4 Analytical results  

4.1 Phase velocity and growth rate of wave 

Fig. 3 (a) and (b) show the phase velocity k/]ˆRe[  and growth rate ]ˆIm[ of 
the wave generated in the web subjected to the fluid flow in the narrow passage 
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as a function of the flow velocity V̂ . In this figure, three types of curve denote 
the results of wave number 0.2,6.1,2.1k , respectively. From Fig. 3(a), it is 

seen that there are forward and backward waves for each wave number at the 
flow velocity of zero, and vary with increasing flow velocity. The phase velocity 
of the backward wave progressively goes to zero. After the phase velocity of the 
backward wave has become zero, the backward wave becomes forward wave, 
and its phase velocity increases as the flow velocity increases. From Fig. 3(b), it 
is seen that unstable (flow-induced) waves occurs because growth rate of the 
forward wave becomes positive, and that the waves occur as a type of traveling 
wave. 
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Figure 3: Phase velocity k/]ˆRe[  and growth rate ]ˆIm[  with changing 

flow velocity V̂ . 

4.2 Unstable region  

Fig. 4(a) shows the unstable region of the wave with changing the flow velocity 

as a function of the tensile force Ŝ . In this figure, four types of curve denote the 

result of the tensile force 3 3ˆ 1.2 10 ~ 4.8 10 .S     It can be seen that the unstable 

region of wave number becomes narrower with increasing the tensile force, and 
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the critical flow velocity increases with increasing the tensile force. The unstable 
region of the wave number becomes broader with increasing the fluid flow. 
Moreover, it can be seen that the most unstable wave number is about 0.5.k   
Fig. 4(b) shows the unstable region of the wave with changing the flow velocity 
as a function of the web supporting width. In this figure, four types of curve 

denote the results of the web supporting width ˆ 60 ~ 120.L   It can be seen that 
the unstable region of wave number becomes broader with increasing the web 
supporting width, and the critical flow velocity decreases with increasing the 
web supporting width. The unstable region of the wave number becomes broader 
with increasing the flow velocity. 
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Figure 4: Unstable region with changing tensile force applied to the 

web Ŝ and supporting width ˆ.L  

5 Conclusions 

The theoretical stability analysis of the flow-induced wave generated in the web 
subjected to the fluid flow in the narrow gap was developed. In the stability 
analysis, the effect of the fluid flow, tensile force, and web supporting width on 
the stability were examined and the dispersion relation of the flow-induced wave 
were clarified. The following main conclusions were obtained: 
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(1) The flow-induced traveling wave occurs in the web due to the fluid flow in 
the narrow gap when the flow velocity becomes higher. 

(2) The unstable region of wave number becomes narrower with increasing the 
tensile force, and becomes broader with increasing the flow velocity. The 
critical flow velocity increases with increasing the tensile force.  

(3) The unstable region of wave number becomes broader with increasing the 
web supporting width, and the critical flow velocity decreases with 
increasing the web supporting width. 

(4) The flow-induced wave is generated in which the wave number is about 
0.5.k   

References 

[1] F. Inada and S. Hayama, A Study on Leakage-Flow-Induced Vibrations (1st 
Report, Fluid-Dynamic Forces Acting on the Walls of a One-Dimensional, 
Narrow, Tapered Passage), JSME Int. J. Series III, 31, pp.39-47, 1998. 

[2] F. Inada and S. Hayama, A Study on Leakage-Flow-Induced Vibrations. 
Part 1: Fluid-Dynamic Forces and Moments Acting on the Walls of a 
Narrow Tapered Passage, Journal of Fluids and Structures, 4, pp.395-412, 
1990. 

[3] H. Nagakura and S. Kaneko, The Stability of a Cantilever Beam Subjected 
to One-Dimensional Leakage Flow (in Japanese), Transactions of the 
JSME. Series C, 58 (546), pp.352-259, 1992. 

[4] C. A. Evrensel and A. Kalnins, Response of Compliant Slab to Inviscid 
Incompressible Fluid Flow, Journal of Acoustical Society of America, 78, 
pp.2034-2041, 1985. 

[5] R. J. Hansen and D. J. Huston, C. C. Ni, An Experimental Study of Flow-
Induced Waves on a Flexible Surface, Journal of Sound and Vibration, 68, 
pp.317-334, 1980. 

[6] P. W. Carpenter and A.D.Garrad, The Hydrodynamic Stability of Flow 
Over Kramer-Type Compliant Surface. Part 1. Tollmien-Schlichting 
Instabilities, Journal of Fluid Mechanics, 155, pp.465-510, 1985. 

[7] P. W. Carpenter and A. D. Garrad, The Hydrodynamic Stability of Flow 
Over Kramer-Type Compliant Surface. Part 2. Flow-Induced Surface 
Instabilities, Journal of Fluid Mechanics, 170, pp.199-232, 1986. 

[8] Y. B .Chang and P. M. Moretti, Flow-Induced Vibration of Free Edges of 
Thin Film, Journal of Fluids and Structures, 16, pp.989-1008, 2002. 

[9] M. Watanabe and N. Kobayashi, Dynamics and Stability Analysis of 
Axially Moving Web Subjected to Shear Fluid Flow in Narrow Space (in a 
Case of Finitely Long Space) (in Japanese), Transaction of the JSME. 
Series C, 67(664), pp.3722-3729, 2001. 

[10] F. Axisa and J. Antunes, Flexural Vibrations of Rotors Immersed in Dense 
Fluids Part I, Theory, Journal of Fluids and Structures, 6, pp.3-21, 1992 

Advances in Fluid Mechanics VIII  403

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 69, © 2010 WIT Press


