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Abstract

This paper deals with an elliptical cylinder in regular waves and investigation
is made to determine the exciting forces and moments exerted on this body in
regular waves. We have used the potential theory formulation in this case under
the assumption that the viscous effects are negligible. An analytical solution to
the linear wave diffraction problem, in terms of the infinite series of Mathieu’s
function, for a fixed vertical cylinder of elliptical cross-section in water of finite
depth d has been presented. Further, Mathieu functions were simplified by taking
the characteristic number s to be independent of the parameter q. The values of
these simplified forms of Mathieu functions are substituted in the closed form
approximations for the force and moment components for small eccentricity e of
the cylinder, and the results thus obtained are compared with the existing results in
the previous literature. The comparison shows good agreement except for e = 0.9
and e = 1.0. The limiting case of the circular cylinder, obtained by taking e = 0,
has also been studied. The horizontal and vertical forces for the circular and
elliptical cylinder for angle of incidence α = 0◦ and 90◦ have been compared.
Keywords: hydrodynamics, loading, forces and moments, elliptic cylinders, regular
waves, finite depth oceans, diffraction, scattering.

1 Introduction

The determination of wave forces on offshore structures is essential to study
the effects of waves, wind and current on them. The offshore structures should
experience minimal movement to provide a stable work station for operations
such as drilling and production of oil. The solution to the problem of ocean wave
interaction with offshore structures is usually very complex. In many cases, only
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an approximate solution is sought. Some of the mathematical techniques required
for the hydrodynamic problem associated with the design of offshore structures are
analytical while many are numerical in nature. While the evolution of computers
has made the numerical methods more advantageous over the classical analytical
methods, numerical methods alone cannot find absolute success without being
complemented by either analytical methods or at least experiments; in this sense
analytical methods become a cost efficient and handy technique for designers in
most cases.

The diffraction of plane waves by circular cylinders and ribbons is well known
and adequately documented in the literature. Both situations are the limiting cases
of the corresponding elliptical-cylinder problem. Many studies have been done
on the interaction of electromagnetic or sound waves with an elliptic cylinder of
infinite length. The solution to the problem of diffraction of electromagnetic waves
by an elliptic cylinder and the corresponding Mathieu function series solution was
originally given by Sieger [4]. This paper attracted scant attention, owing possibly
to a lack of physical applications, and to analytical difficulties; for the Mathieu
functions could not be treated in a straight forward way like Bessel functions or
Legendre polynomials.

Chen and Mei [1] investigated the problem of scattering of linear progressive
waves by an elliptic cylinder. They obtained the various force and moment
coefficients in terms of Mathieu function series and presented extensive numerical
results for arbitrary wavelengths using a computer program developed by
Clemm [2] for the Mathieu functions.

In the present work the theory developed by Williams [5] has been used to
obtain the force and moment coefficients on the surface of a fixed elliptic cylinder
in water of finite depth for various angles of incidence and for a wide range of
eccentricities ranging from 0.1 to 1.0. While deriving the approximate expressions
for the force and moment coefficients for small eccentricity Williams [5] has
adopted the notations of McLachlan [3] while in the present analysis simplified
forms of Mathieu functions given.

2 The coordinate system

Consider a fixed, rigid vertical cylinder of elliptical cross-section in water of finite
depth d (Figure 1). The coordinate system is fixed with the x-axis along the still
water surface and the z-axis pointing vertically upwards along the axis of the
cylinder. Since the objective of this investigation is to study the potential flow
around an elliptical cylinder in the x-y plane, therefore, the elliptical coordinate
system would be the appropriate and logical choice. The elliptical coordinates are
denoted by (ξ, η, z) where ξ = constant and η = constant are families of confocal
ellipses and hyperbolae, intersecting orthogonally, with common foci (±c, 0).

The elliptical coordinates (ξ, η, z) can be related to the Cartesian coordinates (x,
y, z) by using the following transformation. x = c cosh ξ cos η, y = c sinh ξ sin η
and z = z. The semi-major and minor axes of the ellipse are given as follows.
a = c cosh ξ and b = c sinh ξ. The eccentricity of the ellipse can be expressed as
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Figure 1: Definition sketch for an elliptic cylinder.

e =
√

1 − (b/a)2. The focal distance is given by c =
√
a2 − b2. If we keep focus,

c, fixed and let eccentricity e → 1, ξ → 0, the elliptical cylinder transforms to a
line of length 2c. Alternatively, if we allow e→ 0, ξ → ∞, then a→ b, the ellipse
will transform to a circle with radius r = (x2 + y2)

1
2 .

3 Mathematical formulation

A simple and concise mathematical model to study the potential flow around an
elliptic cylinder can be constructed by using the well known general assumptions
which govern any flow around a solid geometry. To facilitate this, we consider an
inviscid, homogeneous and incompressible fluid and the flow around the object to
be irrotational. By virtue of these assumptions, Euler’s and the continuity equations
can be simplified to yield Laplace’s equation. Let Φ(ξ, η, z, t) denote the total fluid
potential and let z = γ(ξ, η, t) be the equation of the free surface, where (ξ, η, z)
are the elliptical coordinates. Then everywhere in the region of the flow, the fluid
motion is governed by Laplace’s equation.

∇2Φ(ξ, η, z, t) = 0 (1)

where ∇ is the Laplacian operator.
The velocity potential is subject to the following linearized boundary conditions:
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Bottom boundary condition:

Assuming the floor of the ocean to be flat, the boundary condition at the ocean
bottom states that the vertical component of the velocity is zero at the bottom

∂Φ
∂z

= 0 at z = −d; (2)

Body surface boundary condition:

On the surface of the body the velocity of the fluid must be equal to zero

∂Φ
∂ξ

= 0 on ξ = ξo (3)

Dynamic free surface boundary condition:

The dynamic free surface condition is derived from the Bernoulli equation, on the
assumption that the atmospheric pressure outside the fluid is constant.

gγ − ∂Φ
∂t

= 0 on z = 0 (4)

Kinematic free surface boundary condition:

The kinematic condition states that a particle lying on the free surface will continue
to remain on the surface. Mathematically,

∂γ

∂t
+
∂Φ
∂z

= 0 on z = γ (5)

Equation (5) is a concise form of kinematic free surface boundary condition from
which the nonlinear terms have been omitted. The dynamic and the kinematic free
surface boundary conditions can be combined together to yield one equation which
is known as free surface boundary condition,

∂2Φ
∂t2

+ g
∂Φ
∂z

= 0 on z = 0 (6)

Radiation condition:

In addition to the above boundary conditions, there is the Sommerfeld radiation
condition to be discussed. This radiation condition is introduced after splitting the
total velocity potential Φ as the sum of an incident wave potential ΦI and the
scattered wave potential ΦS that is

Φ = ΦI + ΦS (7)

At large distance from the cylinder the scattered potential must be an outgoing
wave i.e ΦS must satisfy the radiation condition, namely

∂φS

∂r
± ik1φS = 0 as r → ±∞ (8)
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where Φs = Re(φse
−iσt)) and k1 is the incident wave number. Here Re stands for

the real part, σ is the wave frequency and φs the complex wave potential.

4 Solution of Laplace’s equation in elliptical coordinates

Laplace’s equation in cartesian coordinates (x, y, z) is written as:

∇2Φ =
∂2Φ
∂x2

+
∂2Φ
∂y2

+
∂2Φ
∂z2

= 0 (9)

The above equation can be expressed in terms of elliptical coordinates (ξ, η,z) by
using the transformation stated in section 2:

∂2Φ
∂ξ2

+
∂2Φ
∂η2

+ c2(sinh2 ξ + sin2 η)
∂2Φ
∂z2

= 0 (10)

To obtain a solution to equation (10) we write

Φ(ξ, η, z) = F (ξ)G(η)Z(z) (11)

where, F(ξ) is a function of ξ, G(η) is a function of η and Z(z) is a function of z
alone. Defining a new positive constant s and the parameter q as s = l2+ p2c2

2 and

q = p2c2

4 , the Laplace’s equation can be written as

d2G

dη2
+ (s− 2q cos 2η)G = 0 (12)

and
d2F

dξ2
− (s− 2q cosh 2ξ)F = 0 (13)

Equation (12) and (13) are known as the canonical forms of Mathieu’s equation and
modified Mathieu’s equation respectively. The solution to equation (12) consists
of the periodic Mathieu functions

G(η) = [cen(η, q), sen(η, q) ] (14)

where cen(η, q) and sen(η, q) are respectively the even and odd Mathieu functions
of order n and argument η, while the solution to equation (13) consists of the
modified (or radial) Mathieu functions

F (ξ) = [Cen(ξ, q), Sen(ξ, q);Feyn(ξ, q), Geyn(ξ, q) ] (15)

of the first and second kind of order n and arguments ξ. These and other variety
of Mathieu functions are defined in McLachlan . The functions cen(η, q) and
sen(η, q) can be expressed as a series of cosine and sine terms. Also, the functions
Cen(ξ, q) and Sen(ξ, q) can be written as a series of Bessel’s function Jn of the
first kind, while the functionsFeyn(ξ, q) andGeyn(ξ, q) can be written as a series
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of Bessel’s function Yn of the second kind. Thus solution of equation (10) which is
periodic in η and has a real exponential behaviour in z will consist of the product
of equation (11) with any linear combination of products of equations (14) and
(15) which have the same value of s and q, namely

[exp(pz), exp(−pz)][(Cen(ξ, q), F eyn(ξ, q))cen(η, q),

(Sen(ξ, q), Geyn(ξ, q))sen(η, q)]

5 A close form analytical solution

In this section a closed form solution to the linear diffraction problem is obtained
for a fixed vertical cylinder of elliptic cross-section extending from the seabed and
piercing the free surface. This type of analysis, was initially done by Chen and
Mei [1], and then by Williams [5]. A complete derivation of the velocity potential
Φ and expressions for the force and moment coefficients is presented here, in terms
of Mathieu functions. For the following analysis, the usual assumption of inviscid,
incompressible fluid and irrotional flow is made. A linear simple harmonic wave of
time period T , wave length L, wave height H and angular frequency σ is incident
at an angle α to the major-axis upon a vertical cylinder of elliptic cross-section in
water of finite depth d. The incident wave upon arriving at the structure undergoes
significant diffraction. The incident waves are assumed to be of small height as
compared to their lengths in a finite water depth so that the linear theory may
be used. The coordinate system and the mathematical formulation along with the
boundary conditions have already been discussed. Then, the potential due to the
linear incident wave is given by

ΦI =
gH

σ

coshk1(z + d)
coshk1d

Re
[
e−iσt exp {ik1(x cosα+ y sinα)}] (16)

where Re stands for the real part, x and y are given in section 2 and g is the
acceleration due to gravity. In terms of Mathieu functions (see McLachlan [3,
p.207]),

ΦI =
2gH
σ

coshk1(z + d)
coshk1d

Re

[
e−iσt

∞∑
n=0

{
A2n0

Ce2n(ξ, q)ce2n(η, q)ce2n(α, q)
ce2n(0, q)ce2n(π

2 , q)

+ qB2n+22

Se2n+2(ξ, q)se2n+2(η, q)se2n+2(α, q)
se′2n+2(0, q)se

′
2n+2(

π
2 , q)

− iq
1
2A2n+11

Ce2n+1(ξ, q)ce2n+1(η, q)ce2n+1(α, q)
ce2n+1(0, q)ce′2n+1(

π
2 , q)

+ iq
1
2B2n+11

Se2n+1(ξ, q)se2n+1(η, q)se2n+1(α, q)
se′2n+1(0, q)se2n+1(

π
2 , q)

}]
(17)
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In order to find an expression for the scattered potential ΦS we introduce the
modified Mathieu functions of the third and fourth kinds denoted byMe

(1)
n ,Ne(1)n

and Me
(2)
n , Ne(2)n which can be expressed as:

Me(1),(2)n = Cen(z, q) ± iFeyn(z, q)

Ne(1),(2)n = Sen(z, q) ± iGeyn(z, q)
(18)

where Feyn and Geyn are the even and odd modified Mathieu functions of the
second kind respectively.

Thus, the scattered potential ΦS is taken to be of the form

ΦS =
2gH
σ

coshk1(z + d)
coshk1d

Re

[
e−iσt

∞∑
n=0

{
c2nMe

(1)
2n (ξ, q)ce2n(η, q)ce2n(α, q)

+ c2n+1Me
(1)
2n+1(ξ, q)ce2n+1(η, q)ce2n+1(α, q)

+ s2n+2Ne
(1)
2n+2(ξ, q)se2n+2(η, q)se2n+2(α, q)

+ s2n+1Ne
(1)
2n+1(ξ, q)se2n+1(η, q)se2n+1(α, q)

}]
(19)

where c2n, c2n+1, s2n+2 and s2n+1 are coefficients to be determined. The total
velocity potential is obtained by adding the incident potential ΦI and scattered
potential ΦS

Φ = ΦI + ΦS (20)

Thus, using equation (17) and (19), we obtain:

Φ =
2gH
σ

coshk1(z + d)
coshk1d

Re

{
e−iσt

∞∑
n=0

[{
A2n0 Ce2n(ξ, q)

ce2n(0, q)ce2n(π
2 , q)

+ c2nMe
(1)
2n (ξ, q)

}
× ce2n(η, q)ce2n(α, q)

+
{

qB2n+22 Se2n+2(ξ, q)
se′2n+2(0, q)se

′
2n+2(

π
2 , q)

+ s2n+2Ne
(1)
2n+2(ξ, q)

}
× se2n+2(η, q)se2n+2(α, q)

+
{−iq 1

2A2n+11 Ce2n+1(ξ, q)
ce2n+1(0, q)ce′2n+1(

π
2 , q)

+ c2n+1Me
(1)
2n+1(ξ, q)

}
× ce2n+1(η, q)ce2n+1(α, q)
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+
{

iq
1
2B2n+11 Se2n+1(ξ, q)

se′2n+1(0, q)se2n+1(
π
2 , q)

+ s2n+1Ne
(1)
2n+1(ξ, q)

}
× se2n+1(η, q)se2n+1(α, q)

]}
(21)

To determine the coefficients, c2n, c2n+1, s2n+2 and s2n+1 we use the boundary
condition that the water-particle velocity normal to the surface of the cylinder is
zero. Thus we obtain

Φ =
2gH
σ

coshk1(z + d)
coshk1d

∞∑
n=0

[{
A2n0 ce2n(η, q)ce2n(α, q)Ee2n(ξ, q)V e2n(ξ0, q)

ce2n(0, q)ce2n(π
2 , q)

}
cos(σt− β2n)

+
{
qB2n+22 se2n+2(η, q)se2n+2(α, q)Ue2n+2(ξ0, q)De2n+2(ξ, q)

se′2n+2(0, q)se
′
2n+2(

π
2 , q)

}
× cos(σt− γ2n+2)

+
{
q

1
2A2n+11 ce2n+1(η, q)ce2n+1(α, q)Ee2n+1(ξ, q)V e2n+1(ξ0, q)

ce2n+1(0, q)ce′2n+1(
π
2 , q)

}
× sin(β2n+1 − σt)

+
{
q

1
2B2n+11 se2n+1(η, q)se2n+1(α, q)Ue2n+1(ξ0, q)De2n+1(ξ, q)

se′2n+1(0, q)se2n+1(
π
2 , q)

}
× sin(σt− γ2n+1)

]
(22)

6 Forces and moments on the elliptical cylinder

We shall now derive the formulae for force F(Fx, Fy) and moment M(Mx,My

and Mz). Here x, y and z represent the components along the three coordinate
axes respectively. The pressure normal to the surface of the elliptic cylinder is
given by the linearized Bernoulli equation. Thus if p denotes the pressure, ρ the
fluid density and g the acceleration due to gravity, then

p = ρΦt − ρgz on ξ = ξ0 (23)

Then Fx and Fy are given by the formula

F (1)x =
∫

S

p (n̂ · x̂) dS F (1)y =
∫

S

p (n̂ · ŷ) dS on ξ = ξ0 (24)

where S denotes the wetted surface of the body, n̂ is the unit normal in the outward
direction to the surface of the cylinder and dS is the elementary area.
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The solution of the first order forces can be written after considerable
mathematical manipulation,as follows using Fx = εF

(1)
x and h = εH is the first

order wave height. Thus

Fx = −8ρgh tanhk1d sinh ξ0
k21

∞∑
n=0

[
ce2n+1(α, q)ce2n+1(0, q)

ce′2n+1

(
π

2
, q

)
V e2n+1(ξ0, q) cos(β2n+1 − σt)

]
(25)

Fy =
8ρgh tanhk1d cosh ξ0

k21

∞∑
n=0

[
se2n+1(α, q)se′2n+1(0, q)

se2n+1

(
π

2
, q

)
Ue2n+1(ξ0, q) cos(γ2n+1 − σt)

]
(26)

The moments Mx and My about the x and y axes respectively, taken about the
sea-bed z = −d are

Mx =
∫

S

(z + d) p (n̂ · ŷ) dS

My =
∫

S

(z + d) p (n̂ · x̂) dS on ξ = ξ0 (27)

The twisting momentMz about z-axis is

Mz =
∫

S

p (x n̂ · ŷ − y n̂ · x̂) dS on ξ = ξ0 (28)

Following the same procedure as we did in obtaining Fx, we can write

Mx =
8ρgh(k1d tanh k1d+ sech k1d− 1)

k31
cosh ξ0

∞∑
n=0

[
se2n+1(α, q)se′2n+1(0, q)se2n+1

(
π

2
, q

)
Ue2n+1(ξ0, q) cos(γ2n+1 − σt)

]
(29)

My =
−8ρgh(k1d tanh k1d+ sechk1d− 1)

k31
sinh ξ0

∞∑
n=0

[
ce2n+1(α, q)ce2n+1(0, q)ce′2n+1

(
π

2
, q

)
V e2n+1(ξ0, q) cos(β2n+1 − σt)

]
(30)
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Figure 2: Comparison of the maximum non-dimensional horizontal forces for the
elliptical and circular cylinder as a function of k1a for α = 300.

Mz =
8ρgh tanhk1d

k31
∞∑

n=0

[
se2n+2(α, q)se′2n+2(0, q)se

′
2n+2

(
π

2
, q

)
Ue2n+2(ξ0, q) sin(σt− γ2n+2)

]
(31)

Extensive numerical results for the forces and moments on an elliptical cylinder
have been presented in graphical form for a wide range of relevant parameters
by Chen and Mei [1]. As said earlier, calculation of the Mathieu functions and
associated coefficients requires considerable computational effort, and, also, the
convergence of the series expressions for the force and moment components is
slow for large values of q.

7 Results and conclusions

The solution of Mathieu’s equation led to a closed form expression for velocity
potential on the surface of the elliptic cylinder in water of finite depth ; it
is this velocity potential which is used to extract the formulae for the non-
dimensional forces and overturning moments exerted by a linear progressive wave
incident on the surface of the cylinder. Therefore, the values of maximum non-
dimensional forces F(Fx, Fy) and overturning moment Mz will be used as the
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Figure 3: Maximum non-dimensional overturning moment as a function of k1a
Mz for α = 600.

basis of discussion and comparison with the previous study of Williams [5]. The
calculations of the aforementioned forces and moments require the evaluation of
the special functions such as Mathieu functions which eventually necessitate the
computations of the Bessel functions of integer order and positive real arguments.
For simplicity these functions were computed by using the commercially available
IMSL subroutine. A simple computer code is then developed to obtain the forces
and overturning moments for the previous and present investigation.

Figure 2 shows the comparison of the maximum non-dimensional horizontal
forces plotted against the non-dimensional wave number k1a for the angles α =
30◦ and for eccentricities ranging from 0.0 to 0.5. The maximum of these forces
occurs at zero wave number and decreases with increasing wave number k1a. In
general, the forces appear to decline nearly exponentially with increasing wave
numbers greater than 1.0. The effect of the angle of inclination α with respect
to the incident wave seems to be more dramatic and clearly visible on the two
components of the forces. It is found (not shown here) at the α = 30◦, the ratio
of max|Fx| and max|Fy| is approximately 2 at k1a = 0 while it becomes 0.8
for α = 45◦ for e = .1, .2, .3. It is also found that the ratio of the max|Fx| to
the max|Fy| decreases with increasing eccentricity. For example, at k1a = 0 and
α = 30◦, the ratio of max|Fx| to max|Fy| is approximately 2.0 for e = 0.1 which
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becomes 0.5 for e = 1.0. For α = 45◦, max|Fx| and max|Fy| coincide for k1a
exceeding 2.0.

A sample curve depicted in Figure 3 shows the overturning moment max|Mz|,
plotted against the non-dimensional wave number k1a for α = 30◦. The figure
contains max|Mz| curves for different eccentricities ranging from e = 0.1 to
e = 1.0. It is found that the values of max|Mz| for the previous and present study
are identical. The turning moment Mz is zero for zero wave number. Further it
increases monotonically to attain a peak value at k1a ≈ 1.9 for most eccentricities
and then starts declining. For α = 30◦, the peak value of max|Mz| at e = 1.0 is
observed to be an order of magnitude higher than its value at e = 0.1. This feature
is loosely preserved for other angles of inclination as well. Similar trends are also
observed for the peak values of max|Mz| for other angles of incidence.
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