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Abstract

This study concerns the gravity-driven two-dimensional laminar flow of a thin
layer of fluid down a wavy inclined surface. Three mathematical models describ-
ing the unsteady two-dimensional flow evolution are presented and contrasted.
The first is a shallow-water model, while the other two are integral-boundary-
layer models representing non-hydrostatic approximations to the two-dimensional
Navier-Stokes equations, which are valid for thin fluid layers. Various tests and
simulations were conducted in order to assess the performance of the models. First,
the instability threshold for the flat bottom case associated with each model was
analytically determined and compared with the theoretical prediction based on the
Navier-Stokes equations. Also for the flat bottom case, comparisons in neutral sta-
bility curves were made with existing experimental data. In addition, comparisons
between two-dimensional numerical solutions of the full Navier-Stokes equations,
obtained using the CFX software package, with simulations from the models were
also investigated for a wavy bottom case. The wavy surface considered in this study
corresponds to that of a sinusoidal profile. The emerging interfacial wave structure
along with the combined effect of bottom topography and surface tension are dis-
cussed. Finally, critical Reynolds number predictions for cases including bottom
topography are compared to existing experimental data.
Keywords: film flow, wavy incline, shallow-water and integral-boundary-layer mod-
els, numerical, experimental, analytical, CFX solver.

1 Introduction

There are many situations in which a model for flow down an inclined plane is
applicable. Naturally occurring situations include mudslides and ice channels [1].
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As well, such models are useful for engineering applications such as aqueducts,
dam spillways, and coatings in manufacturing [2]. Analytic models for this type
of flow are useful because they help predict key features of the flow, such as under
what conditions it will become unstable and how the shape of the free surface will
develop after this happens. These are important predictions to make because the
large roll waves that are formed when the flow becomes unstable can overflow
channel walls or damage measurement equipment in engineering settings; in nat-
ural settings, these roll waves result in more destructive surges of flow due to the
increased mass flow rate and momentum [2]. Therefore, models that give accurate
predictions of these features of the flow are important, and could be used to design
channels that can handle the waves that are likely to occur, or that can reduce the
likelihood of roll waves forming.

Many previous studies focus on the case without bottom topography. Detailed
analytical investigations include those by Ruyer-Quil and Manneville [3], who
developed models based on weighted residual methods. They consider even-bottom
surfaces, and develop first- and second-order models applicable to two and three
dimensional cases. The problem has also been extended by Balmforth and Mandre
[1], and D’Alessio et al. [2] to include bottom topography. Balmforth and Mandre
use the shallow-water model, focussing on the turbulent version, while D’Alessio
et al. apply a weighted residual model to the uneven bottom case.

In this study, three models that describe fluid flow over an uneven, inclined
plane are compared. The problem setup and coordinate system are shown in Fig-
ure 1. These models are the shallow-water model (SWM), the integral-boundary-
layer (IBL) model, and the weighted residual model (WRM). Model predictions
for the critical Reynolds number for the onset of instability are compared with the
theoretical value obtained from the Orr-Sommerfeld equation for the flat bottom
case. Neutral stability curves resulting from the models are also compared with
experimental data for the flat bottom case. As well, fully developed flows for var-
ious sets of parameters are compared with direct numerical simulations of the full

Figure 1: The coordinate system and flow setup.
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Navier-Stokes equations using the computational fluid dynamics package CFX. In
this comparison, bottom topography is included. The combined effect of surface
tension and bottom topography on the stability is briefly discussed. Finally, the
weighted residual model, which turns out to be the optimal model, is then com-
pared to experimental results for flow over a wavy incline.

2 Description of models

Three models are considered in this study. They are the shallow-water model, the
integral-boundary-layer model, and the weighted residual model. All three of the
models are given below, with a brief description of how they are obtained.

As suggested by the name, the shallow-water model is founded on shallow-water
theory and hence assumes that the fluid is incompressible and inviscid, and that the
thickness of the fluid is much smaller than the characteristic length in the direction
of the flow. It then follows that the pressure distribution is hydrostatic and that the
streamwise velocity is depth independent. This model is limited to gentle inclines.

After these simplifications are made, three modifications are added to make the
model more realistic. A flow factor multiplying the advective term is added; the
value is empirically determined, and depends on whether the flow is laminar or tur-
bulent. For the laminar model, a value of 4/5 is used [1]. A term partially account-
ing for viscosity and a bottom friction term are also added.

Two different forms of the shallow-water equations have been developed: one
pertaining to laminar flow and the other to turbulent flow. The difference between
the two is in the viscosity parameter of the added viscous term, the form of the bot-
tom friction term, and the coefficient of the advection term. Balmforth and Man-
dre [1] give a thorough description of the two versions of the model. The laminar
model is used in this study because flows having a Reynolds number of order unity
are considered, and because the other two models are developed assuming laminar
flow. The equations describing the laminar shallow-water model are given by
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The non-dimensional flow variables are h, the height of the free surface from the
bottom, and q, the mass flow rate. Here, θ denotes the angle of inclination of the
surface, Re is the Reynolds number, defined as Re = Q/ν, and We is the Weber
number, defined as We = σH

ρQ2 , where Q is the non-dimensional characteristic
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volume flow rate, H is the Nusselt thickness, ρ is the fluid density, σ is the surface
tension coefficient, and ν is the kinematic viscosity of the fluid. The shallowness
parameter, δ, is the ratio of the Nusselt thickness of the fluid to some characteristic
length in the x direction, and is assumed to be small.

The integral-boundary-layer model is derived more rigorously from the Navier-
Stokes equations. The non-dimensionalized continuity and momentum equations
are
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Here, the advective terms in the z-momentum equation are neglected because
they become third order in δ when the pressure is substituted into the x-momentum
equation. The model is therefore second-order accurate in δ. This model more
accurately accounts for the fluid viscosity and allows a non-hydrostatic pressure
distribution, which are improvements over the shallow-water model.

At the free surface, we apply dynamic and kinematic conditions, given in non-
dimensional form by
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As well, the following no-slip conditions are imposed at the bottom surface:

u = w = 0 at z = ζ . (8)

The pressure can be eliminated by integrating the z-momentum equation and
using the first condition in eqn. (6) to find an expression for pressure, and then
substituting this expression into the x-momentum equation. This leaves the con-
tinuity equation and a single momentum equation. The form of the streamwise
velocity is then assumed based on the known steady flow over an even-bottom
inclined plane, and modified to account for bottom topography defined by ζ(x).
The profile is given by
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The z dependence is then eliminated by integrating the equations across the
fluid layer and applying the boundary conditions. The final form of the integral-
boundary-layer model equations are
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The weighted residual model is derived following a similar procedure to that
used for the integral-boundary layer model. However, before integrating in the
cross-stream direction, the equations are multiplied by a weighting function; in this
case, a parabolic profile is used as the weighting function. In this way, a weighted
average over the depth of the fluid is used. The resulting model equations are
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3 Model performance

To evaluate and compare the performance of the three models, four methods are
employed. First, the critical Reynolds number at which the flow becomes unstable
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is calculated for the flat bottom case, and compared to the known theoretical value.
Second, the neutral stability curves for each model are compared to experimental
data collected by Liu et al. [4]. Next, the evolution of the flow rate q, as predicted
by the models, is compared to the solution of the full Navier-Stokes equations,
where the solution to the full Navier-Stokes equations was obtained using the soft-
ware package CFX. Finally, critical Reynolds number predictions for the weighted
residual model for flow over a wavy bottom are compared to experimental results
collected by Wierschem et al. [5]. Only the weighted residual model is considered
in this final comparison because it is found to perform the best in the previous three
tests.

The critical Reynolds number for a thin film flow down an even-bottom inclined
plane has been determined by Benjamin [6] and Yih [7] from the corresponding
Orr-Sommerfeld equation. The result is that the critical Reynolds number is:

Recrit =
5
6

cot θ . (14)

Performing a linear stability analysis on the shallow-water model, the integral-
boundary-layer model, and the weighted residual model yields the following results:

ReSWM
crit =

5
22

cot θ , (15)

ReIBL
crit = cot θ , (16)

and

ReWRM
crit =

5
6

cot θ , (17)

respectively.
These results show that, of the three models considered, only the weighted resid-

ual model correctly predicts the critical Reynolds number. The integral-boundary-
layer model predicts a critical Reynolds number slightly higher than the correct
value, although it is still close. The shallow-water model gives a very poor predic-
tion, significantly underestimating the critical Reynolds number.

To further evaluate the performance of the three models, the neutral stability
curves for each of the models are compared to experimental data gathered by Liu
et al. [4] and plotted in Figure 2.

As with the critical Reynolds number predictions, the weighted residual model
most closely matches the experimental data. The integral-boundary-layer model
is a slightly poorer predictor of the experimental data, although it gives a much
better prediction than the shallow-water model. It should also be noted that the
experimental data is for a very gentle incline, which is much more appropriate for
the shallow-water model than for the integral-boundary-layer or weighted residual
models; despite this, the weighted residual model does very well.

For the next comparison, numerical solutions using the models are compared to
direct numerical simulations of the full Navier-Stokes equations. The full Navier-
Stokes equations for the free surface flow down an inclined plane have been solved
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Figure 2: Comparison of neutral stability curves with experimental data for a
glycerin-water solution with θ = 5.6 ◦.

by employing CFX. This software package solves the full Navier-Stokes equations
using a combination of finite volume and finite element methods [8]. The loca-
tion of the interface is determined using a compressive volume fraction advection
scheme [9].

The models considered in this study can also be used to predict the transient
behaviour of the flow by numerically solving the equations. Using LeVeque’s frac-
tional step method [10], the unsteady equations for each model can be solved.
When the steady-state solution, found using the bvp4c routine in matlab, is used
as the initial condition and is perturbed, waves develop on the free surface. Even-
tually, characteristic features such as the number and height of the wave peaks in
a domain of a given length are maintained. The wave characteristics predicted by
the weighted residual and integral-boundary-layer models are compared to those
found by solving the full Navier-Stokes equations. The shallow-water model is not
included in this comparison because the inclination considered is too large for that
model.

The comparison between the solutions to the full Navier-Stokes equations and
the model equations is for a case without surface tension (i.e. We = 0). The
angle of inclination is 33.7 ◦, and the Reynolds number is 2.28. The number and
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Figure 3: Fully developed roll waves for the IBL model, the WRM, and CFX; vol-
ume flow rate versus position along domain.

height of roll waves emerging from the weighted residual and integral-boundary-
layer models are shown in Figure 3, where the non-dimensional volume flow rate
is plotted against the position along the domain. The calculations for the same
flow, resulting from the full Navier-Stokes equations using CFX, are also shown in
Figure 3. Figure 4 shows the fluid height and bottom topography for both models
and the CFX results, for the same set of parameters.

Comparing the figures, it can be seen that both the integral-boundary-layer and
the weighted residual models correctly predict the number of roll waves in the
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Figure 4: Fully developed roll waves for the IBL model, the WRM, and CFX; fluid
height versus position along domain.

Comparing the figures, it can be seen that both the integral-boundary-layer and
the weighted residual models correctly predict the number of roll waves in the
domain. However, the weighted residual model more closely predicts the height of
the waves.

For the case shown in Figure 3, tall sharp peaks emerge. If surface tension
would have been included, the waves that would develop would be smoother and
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Table 1: Comparison between experimental, numerical and theoretical values of
Recrit for a wavy-incline case with δ = 0.1.

Recrit

θ Reevencrit Experimental Numerical Theoretical

15◦ 3.3 5.1± 0.4 (5.5,5.6) 5.6

30◦ 1.4 2.2± 0.2 (1.8,1.9) 1.7

40.7◦ 0.97 1.3± 0.1 (1.1,1.2) 1.1

wider. Surface tension and bottom topography also affect the stability of the flow
by altering the critical Reynolds number. D’Alessio et al. [2] have shown that
for small to moderate surface tension, bottom topography increases the critical
Reynolds number of the flow while for larger surface tension and topography, the
opposite occurs.

As a final confirmation of the validity of the weighted residual model, criti-
cal Reynolds number predictions are compared to experimental data for a wavy
incline, collected by Wierschem et al. [5]. Table 1 contrasts the experimentally
obtained critical Reynolds numbers with those from the weighted residual model
for three different angles of inclination. Presented in the table are results from the
numerical simulations along with theoretical values obtained from a linear stabil-
ity analysis of the weighted residual model. Also listed in the table is Reevencrit , the
corresponding critical Reynolds number for an even bottom. The table shows that
numerical predictions are almost all within the error of the experiment, and in close
agreement with the theoretical values. This further demonstrates that the weighted
residual model is the optimal model for flow over an incline with or without bot-
tom topography.

4 Summary

This study compared the performance of three models for free surface flow down
a wavy inclined plane. The simplest model is the shallow-water model, and it
gives the poorest agreement with theory and experiments. The integral-boundary-
layer model provides much better predictions in both areas, although the critical
Reynolds number still does not match the theoretical value for an even bottom. The
weighted residual model exactly predicts the theoretical critical Reynolds number,
and also matches the experimental neutral stability curve very closely.

The integral-boundary-layer and weighted residual models were solved
numerically and compared to direct numerical simulations of the full Navier–
Stokes solutions, obtained using CFX. The weighted residual model performs
slightly better than the integral-boundary-layer model since it yields better
agreement in the height of the peaks.
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Finally, the weighted residual model gives good predictions for the critical
Reynolds number for flow over a wavy surface when compared to experimental
data. Considering all four methods of comparison, the weighted residual model
gives the best results over all.
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