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Abstract 

Numerical simulations of a two-dimensional gravitational liquid sheet injected in 
another immiscible fluid are performed. The steady state of the liquid sheet has 
been calculated by solving the two-dimensional Navier-Stokes equations for 
variable density incompressible flows and the interface between the two fluids 
has been determined by using the Volume of Fluids method . The analysis takes 
into account viscous, inertial, gravitational and surface tension forces and 
different regimes of motion are identified according to the values of Reynolds 
and Stokes numbers. Velocity, pressure and shape of the sheet are investigated 
and the results are in well agreement with previous numerical and experimental 
results.  
Keywords: VOF method, liquid jet, die-swell effect. 

1 Introduction 

The numerical simulation of free surface flows represents a very hard challenge 
due to the complex physical phenomena involved in the liquid-gas or liquid-
liquid interface dynamics, such as changes in topology (coalescence, break-up), 
instability, surface tension effects. A variety of engineering applications, 
concerning atomization, drops impact and liquid jets dynamics have motivated 
much research on this topic. 
     In particular, laminar liquid jets injected from a rectangular slot (liquid 
sheets) in an immiscible fluid have been studied extensively in the last years. 
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The qualitative behaviour of a steady liquid sheet is well known. In the absence 
of gravity, at high Reynolds numbers the sheet contracts, whereas at low 
Reynolds numbers due to the sudden change of the boundary conditions on the 
viscous stresses, the sheet expands in the near field (die-swell effect, see 
Georgiou et al. [1]). Other important effects affecting the dynamics of the jet are 
surface tension and gravity. Among several contributions in the literature, two 
accurate references for the numerical simulation of the relevant flow field are 
represented by the works of de Luca and Costa [2] and Richards et al. [3]. In the 
former the numerical simulation of the liquid sheet is addressed by means of the 
so-called orthogonal Boundary-Fitted Coordinate Transformation (BFCT), while 
in the latter a Volume Of Fluids method (VOF) is applied to simulate a round 
liquid jet issuing into another liquid. 
     In the present paper a two-dimensional second order finite difference VOF-
code, named MultiFluids, is developed to investigate the behaviour of a two-
dimensional liquid sheet issuing from a rectangular slot under the influence of 
the gravitational field. The aim of the present paper is to carry out wide spectrum 
numerical simulations concerned with various flow regimes. This application is 
still lacking in the VOF literature. 
     The remainder of this paper is organized as follows. In section 2 we give a 
brief description of the VOF method and we introduce the numerical 
peculiarities of MultiFluids code. In section 3 the liquid sheet problem is set out. 
Finally, in section 4 and 5 we report the results of the numerical simulations and 
some conclusions. 

2 Numerical method 

In this section we describe the method for tracking the interface between two 
fluids in a two-dimensional, nonreacting, incompressible flow. In recent years a 
number of methods have been developed for the solution of problems involving 
the motion of interfaces in multiphase flows. A possible classification of these 
methods is based on the type of grid used. From this point of view the various 
methods for interface simulation can be divided into two great classes. In the 
first class, the interface is treated as a boundary between two sub-domains. This 
approach requires a deformable grid in order to follow the motion of the 
interface. The principal disadvantage in the use of these methods is that the grid 
can undergo a considerable distortion. The second class of methods uses a 
predefined fixed grid that does not move with the interface. In this case, a 
specific advection scheme, able to convect the interface, is employed. These last 
schemes can be divided into explicit and implicit if the interface is explicitly or 
implicitly represented. Among the implicit methods there are the Level Set (LS) 
and VOF methods. The first one, introduced by Osher and Sethian [4], describes 
the interface as the zero level of a continuous scalar field, named level set 
function. This method consists updating the level set function at each time step 
by means of a transport equation. The principal advantage of this method, with 
respect to the VOF method, is that the approximation of the interface is globally 
continuous. Unfortunately, this method does not enforce the mass balance in a 
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natural way. In the VOF method, introduced by Hirt and Nichols [5], the 
interface is represented by means of a Heaviside function, named volume of 
fraction function. In contrast to the LS method, the main advantage of this 
method is that it enforces the mass balance in a natural way, even for a relatively 
coarse grid. Furthermore, as in the LS method, no special treatments are required 
to model the topological changes of the interface or break-up phenomena. 
Unfortunately, this method uses a discontinuous function to describe the 
interface, thus the solution is affected by numerical diffusion and all topological 
information of the interface as, for example, the normal and the curvature, are 
approximated by smoothing the Heaviside function. 
     In the VOF methods, as well as in LS methods, the Navier-Stokes equations 
are used in a “one-fluid formulation” which requires solving only one set of 
equations for two immiscible fluids with different densities and viscosity. In 
order to identify the topology of the interface advected by the velocity field, a 
transport equation for the volume fraction function f is coupled to the Navier-
Stokes equations. This function is used to compute physical properties and local 
curvature of the interface. The equations of motion to be solved are: 
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where Fb is a body force, D  is the symmetric part of the strain tensor and Fs is 
the surface tension force. In eqns. (2), density and viscosity are not constant in 
all physical domain, but their value depends on the volume fraction function: 
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where ρl, µl are the density and the viscosity of the liquid phase and ρg, µg are the 
density and the viscosity of the gas phase.   
     In last years many numerical methods have been proposed in order to model 
the effects of surface tension forces Fs in VOF codes. This is an important topic 
since in many free surface flows, such as fluids with high surface tension (or 
with surfactant), flows with convolute interfaces (high curvature) and pendant 
drops, surface tension forces are the dominant forces. The surface tension term in 
the Navier-Stokes equations creates the principal difficulties, since it is a 
singular term. In several implementations of the VOF method these difficulties 
can produce spurious currents and numerical instability (Renardy and 
Renardy [6]). In our code many of the most popular schemes for surface tension 
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modelling have been tested, the numerical simulations here presented have been 
obtained by means of the Continuum Surface Force (CSF) model (Brackbill et 
al. [7]) because of its low computational cost and wide diffusion in many 
commercial and home-made numerical codes. In CSF model, the effects of 
surface tension forces are modelled by means of an explicit term in the Navier-
Stokes equations: 

 

sss nkF δσ= . 
 

where k is the curvature of the interface, δs is the Dirac function, σ is the surface 
tension coefficient and ns the normal unit vector to the interface. The curvature is 
calculated by evaluating the divergence of the normal unit vector to the interface 
and this vector is calculated by implementing finite differences of the volume 
fraction function smoothed with the filter defined in Lafaurie et al. [8]. Thus the 
surface tension effects are implemented in a simple way, by distributing it over 
neighbouring grid points. 
     In MultiFluids code, the Navier-Stokes equations are solved by means of the 
projection method on staggered uniform grid due to Chorin [9]. The special 
features of our code are: it is based on a explicit fourth order Runge-Kutta 
method; a second order lagrangian scheme for the volume fraction equation is 
used (Gueyffier et al. [10]); a CSF method is adopted in order to model the 
surface tension forces. A modified Neumann boundary condition is employed for 
the special treatment of the normal component of the velocity at the outflow 
boundary (Sander et al. [11]). 

3 Problem definition and numerical setup 

A stationary jet of water is ejected vertically in the gravitational field by means 
of a rectangular slot in an environment of quiescent air (figure 1(a)). The slot 
width is 2b, whereas along the z direction the slot is infinite and the flow can be 
considered two-dimensional. The main dimensionless numbers governing the 
motion of the liquid sheet are Reynolds (Re), Stokes (St) and Capillary (Ca) 
numbers: 
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where ρl, µl are the density and the viscosity of the water, u is the mean inflow 
velocity and σ is the surface tension coefficient. 

3.1 Computational domain 

A sketch of computational domain is shown in Figure 1(b). The flow is assumed 
to be symmetric with respect to the slot symmetry plane (x-z plane in figure 
1(a)), so the computational domain is a rectangle bounded by the symmetric 
plane of the slot at its west side, wall at north and open edges at east and south 
sides. The dimensions of the computational domain depends on the slot width. 
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We assume that the dimension, in axial direction, is equal to Lx = 30b; whereas 
in the normal direction it is set to Ly = 10b. Numerical experiments carried out 
on different domain size confirm that these dimensions are sufficient to obtain a 
full-developed flow. The spatial resolution of computational domain was defined 
by a uniform grid spacing of b/10 spatial step.  
 

                
 

 (a)                                                                       (b) 
 

Figure 1: Schematic description of the (a) physical and (b) computational 
domain. 

3.2 Boundary and initial conditions 

Regarding the initial conditions, we use a rectangular form for the initial shape 
of the jet, whereas for the initial velocity conditions a Poiseuille profile is 
employed in the liquid phase and a zero velocity condition is imposed in the 
gaseous phase (quiescent ambient). For what it concerns boundary conditions, a 
Poiseuille velocity profile has been adopted for the inflow, whereas at the west 
edge of the computational domain a symmetry condition has been imposed. The 
treatment of the boundary conditions at east and south edges is more complex. In 
fact, in order to take into account the lateral inflow of the gas due to the typical 
entrainment effect occurring during the spread of the liquid jet, an open 
boundary condition is imposed on east edge of the computational domain. This 
condition consists in homogeneous Neumann conditions for both velocity 
components. At the outflow, in order to suppress numerical difficulties arising 
from the backflow, a modified Neumann boundary condition for the streamwise 
component of the velocity has been applied. The modification is based on the 
idea that if the streamwise component of the velocity, in the last computational 
cell, is positive, then classic homogeneous Neumann boundary condition is 
adopted. On contrary, if this velocity is negative (backflow), a Dirichlet 
boundary condition is adopted and the streamwise component of the velocity is 
set to zero. 
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4 Results 

In this section we present some results obtained by means of MultiFluids code. 
In order to give a better physical interpretation of the results we introduce a 
classification of different regimes of motion for various Reynolds and Stokes 
numbers. All the possible flow regimes are reported in table 1; for example, a 
liquid jet with high Reynolds and Stokes numbers is in Inertial–Gravitational 
regime, whereas a liquid jet, with low Reynolds and Stokes numbers is in 
Viscous regime. Capillary number can be seen as an additional governing 
parameter for each regimes identified in table 1. Note that in the figures, the 
adopted Cartesian coordinate system (x, y) denoting the axial and lateral 
coordinates are made dimensionless with respect to the half slot width. 
 

Table 1:  Classification of different flow regimes. 

 Re << 1 
Creeping 

Re = O(1) Re >> 1 
Inertial 

St << 1 
No gravity 

regime 

 
Viscous 

 
Viscous 
Inertial 

 
Inertial 

 
St = O(1) 

Viscous  
Gravitational 

Viscous 
 Inertial 

Gravitational 

 
Inertial 

 
St >> 1 

Gravitational 
regime 

 
Gravitational 

 
Gravitational 

 
Inertial 

Gravitational 
    

 
 
 

4.1 Vertically falling liquid sheet 

Figure 2 shows the solution during the transient evolutions of the liquid sheet 
without surface tension force at various time step computed at Reynolds number 
equal to 50 and Stokes number equal to 25. Figure 3 refers to the same 
simulation of figure 2 and shows the steady shape of the computed interface 
(continuous line) together with the inviscid, or torricellian, solution (dotted line). 
This simulation refers to Inertia – Gravity regime for which the jet contracts and 
uncovers downstream the torricellian solution. The numerical solution appears 
more slender than the inviscid one in the near field according with literature 
results. Nevertheless, the contraction of the jet in the present simulations appears 
more pronounced than in de Luca and Costa [2]. Figure 4 shows the pressure 
field when the stationary conditions are reached.  
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                                     (a)                      (b)                     (c)           

   
                                     (d)                     (e)                      (f) 

Figure 2: Transient evolution of the liquid sheet with Ca = ∞, Re = 50 and St 
= 25. ∆t = 10-5 s (a) time step 1, (b) 10000, (c) 20000, (d) 30000, (e) 
40000, (f) 50000. 
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Figure 3: Stationary shape of the liquid sheet: (––) Ca = ∞, Re = 50 and 
St = 25; (---) torricellian solution. 
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Figure 4: Pressure field in stationary condition at Ca = ∞, Re = 50 and 
St = 25.  

4.2 No-gravity or low gravity jet swell problem 

A simulation of the jet behaviour in the Viscous – Inertial regime is represented 
in figure 5. In this regime, in the absence of gravity, the jet exhibits a very large 
swelling due to high viscous effects. According to Nickell et al.[12] the 
extrudate swell for this case approaches to 1.19. Figure 6 shows the classic die-
swell phenomenon computed at Re = 2 and St = 1. This simulation refers to the 
Viscous–Inertial–Gravitational regime. In this regime the jet exhibits a 
remarkable swelling only in the entrance region. This behaviour is due to the 
combination of high viscous and low gravity local effects. Subsequently the 
gravitational effects produce a contraction of the jet that approaches the 
torricellian solution (dotted line). The comparison between figures 7(a) and 7(b) 
emphasizes the different behaviour between the jet in the gravitational and in the 
viscous regime and the role of the velocity fields on the deformed shape of the 
curtain. As we can see in figure 7(a), the velocity field causes a contraction of 
the jet in the Inertial regime, whereas in figure 7(b) a remarkable swelling due to 
velocity field is clearly evident.    
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Figure 5: A detail of the liquid sheet at  Ca = ∞, Re = 4 and St = 0. 
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Figure 6: Stationary shape of the liquid sheet: (––)  Ca = ∞, Re = 2 and St = 
1; (---) torricellian solution. 
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                         (a)                                                                        (b) 

Figure 7: Velocity field and stationary shape of the liquid sheet (––) at 
Ca = ∞. (a) Re = 50 and St = 25, (b) Re = 4 and St = 0. 

4.3 Influence of the capillary number 

A comparison of the jet behaviour with and without surface tension effects is 
reported in figure 8. In this figure we can see that the jet without surface tension 
forces (red line) appears more slender than the jet computed in the case including 
the effects of the surface tension force (black line). As a conclusion, the surface 
tension, in inertial gravity regime, tends to reduce the contraction of the sheet.  
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Figure 8: Influence of the capillary number on the stationary shape of the 
liquid sheet at Re = 50 and St = 25: (––) Ca = 10-2; (––) Ca = ∞. 

5 Conclusion 

The stationary free surface flow of a two-dimensional plane liquid jet evolving in 
quiescent air in presence of gravity has been numerically determined by means 
of a VOF code. Inertia, viscous, gravity and surface tension are all included in 
the present model.  
     The results show that at low Stokes numbers (low gravity) the jet expands 
issuing from the slot and, subsequently, it contracts along the streamwise 
direction, whereas, at zero gravity, the jet expands and, if the Reynolds number 
is very low, the contraction is not present. The dynamics of die-swell phenomena 
is recovered. In the gravitational regime, the effect of the gravity is dominant and 
the jet contracts monotonically along the streamwise direction uncovering far 
downstream the inviscid solution. 
     The results are in good agreement with previous numerical simulations. This 
paper constitutes a preliminary step towards the numerical simulation of breakup 
phenomena, whose task is currently in progress.  
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