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Abstract 

The jet formation through the oscillation of a bubble between a couple of parallel 
rigid walls was numerically investigated. The Navier-Stokes and energy 
equations accompanying with the proper constitutive relations were numerically 
solved to predict the flow and thermal conditions inside and outside the bubble. 
The volume of fluid method was incorporated to capture the bubble surface 
applying a piecewise linear interface reconstruction method. For the bubble to 
walls distances less than certain limits, the bubble underwent a necking process 
after reaching to its maximum volume. The necking process led to splitting of 
the bubble and the formation of a couple of round jets toward the walls. The 
velocity of each jet was higher than the velocity of a jet induced through the 
oscillation of a bubble near a single wall. Also it was found that keeping the 
position of one of the walls fixed, the velocity of the jet toward that wall 
increases with increasing the other wall distance from the bubble, up to a certain 
limit. These analyses were performed for several initial inside to outside pressure 
ratios of the bubble. The results can be used for increasing the performance of 
the devices for which the jet induced through the near wall bubble oscillation is 
applied. 
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1 Introduction 

Bubble dynamics is one of the main subjects in the phenomenological studies of 
cavitation and boiling. Some of the discovered features have seemed to be useful 
for inventing new devices. One of the invented devices is the ink-jet printer. In 
this type of printers, the ink droplets are generated through the collapse of the 
boiling bubbles [1]. Another invented device is a micro-pump that does not use 
any moving element. In this pump, the jet induced through the near wall bubble 
oscillation is applied [2]. It should be reminded that this induced jet that leads to 
the bubble collapse, is the main mechanism of the cavitation damaging effects in 
the turbomachineries and hydraulic structures [3–5]. 
     The jet formation through the near wall bubble oscillation is the subject of the 
present numerical study. To briefly describe the physics of this phenomenon, a 
high-pressure bubble is considered near a rigid wall. The bubble grows 
spherically to reach its maximum volume. During the expansion, the bubble 
potential energy that is related to its gas content, is transferred to the surrounding 
liquid in the form of kinetic energy. The momentum of the outgoing liquid 
however causes the bubble to over-expand. This energy transfer accompanies 
with the pressure decrease inside the bubble and results the deceleration of the 
expansion. At the end of the expansion, the pressure difference between inside 
and outside the bubble has an opposite sign with respect to the start of this 
process and leads to initiation of the compression. The compression is also a 
result of the surface tension. During the compression, the surrounding liquid 
kinetic energy is transferred to the bubble gas content in the form of potential 
energy, but with a lower amount as a result of the viscous damping effects. The 
main effect of the wall is that the surrounding liquid kinetic energy in the regions 
away from the wall is much higher than the region adjacent to the wall. 
Consequently a part of the ingoing liquid penetrates into the bubble as a high 
velocity round jet toward the wall. The jet destroys the bubble spherical shape 
and makes a hole and finally impacts the wall. Sequence of the jet formation 
through the oscillation of a bubble near a wall is shown in Fig. 1. 
 

                

Figure 1: Jet formation through the oscillation of a bubble near a wall. 

     Lauterborn and Bolle [6] carried out several experiments on the near wall 
bubble oscillation and observed the instantaneous bubble shapes using the high-
speed photography. The method for generating the bubble was firing a focused 
short laser pulse. It should be pointed that one of the problems in performing 
such experiments is the lack of possibility to measure the initial pressure inside 
the bubble as well as the equilibrium bubble radius. Consequently, for the 
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numerical simulations one is confronted with making assumptions on the initial 
conditions. 
     In the experiments carried out by Ishida et al. [7] the jet formation through the 
oscillation of a bubble between a couple of parallel walls was investigated. The 
bubble was generated by an electric charge. According to their observations, 
when the distances between the bubble and the walls are less than a certain limit, 
the bubble undergoes a necking process during the compression. The necking 
process leads to splitting of the bubble into a couple of compressing daughter 
bubbles. In turn, a couple of jets toward the walls are induced. They found that 
keeping one of the walls position fixed, the velocity of the jet toward that wall 
increases with increasing the other wall distance from the bubble. 
     The necking process is the result of the fact that the surrounding liquid kinetic 
energy in the regions away from the walls is much higher than the regions 
adjacent to the walls. Consequently a part of the ingoing liquid penetrates into 
the bubble as a plane jet parallel to the walls, leading to necking of the bubble. 
At the moment of the bubble splitting, a stagnation point is created at the 
splitting point. Therefore the plane jet is converted to a couple of round jets 
toward the walls. The round jets intensify the jets induced during the 
compression of the daughter bubbles. Consequently, the jets impact the walls 
with the velocities higher than the velocity of the jet induced through the 
oscillation of a bubble near a single wall. Sequence of the jet formation through 
the oscillation of a bubble between a couple of parallel walls is shown in Fig. 2. 
 

                

Figure 2: The jet formation through the oscillation of a bubble between a 
couple of parallel walls. 

     The numerical studies about the jet formation through the near wall bubble 
oscillation can be divided into two categories. At the first category, the fluid 
flow is assumed to be inviscide and irrotational. To calculate the flow field 
variables, a Laplace equation governing the velocity potential is solved [1]. 
This approach is simple for implementation. But the inviscide fluid assumption 
is no longer acceptable in the small scales [5]. The irrotational flow 
assumption is also incorrect because of the vortical flow structure inside the 
bubble during the jet formation. In the second category, Navier-Stokes 
equations are solved accompanying with the different methods to capture the 
bubble surface [5]. 
     In the present study the second approach is selected to model the jet 
formation through the oscillation of a bubble between a couple of parallel walls. 
The simulations are performed for several initial inside to outside pressure ratios 
of the bubble. One of the walls position is kept fixed and the effects of changing 
the other wall position are investigated. 
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2 Mathematical modelling 

The fluid flow field under consideration contains two immiscible phases with a 
sharp interface across which, no mass transfer occurs. The primary phase is 
compressible air inside the bubble and the secondary phase is incompressible 
water outside the bubble. 

2.1 Interface capturing approaches 

The recent numerical methods developed to precisely capture the sharp interfaces 
between the immiscible fluids on Eulerian grids, can be divided into a couple of 
approaches called the surface approach and the volume approach. 
     In the surface approach, the interface is represented by the marker points. The 
most important advantage of this approach is that the interface remains sharp as 
it is advected across the domain. This results precisely calculation of the 
interface curvature. There are a couple of mostly used methods that can be 
categorized in this approach, including the front tracking method and the level 
set method. In the front tracking method the interface is represented by a set of 
connected massless marker particles and explicitly tracked in a Lagrangian 
manner using the flow field local velocity. By using this method, some 
difficulties arise in modelling the coalescence or break up of the interfaces. In the 
level set method a scalar advection equation is solved for a distance function 
from the interface. The interface is defined as the zero level set of the distance 
function and implicitly captured during its advection across the domain. The 
disadvantage of the level set method is that there is no guaranty for the mass 
conservation during the interface advection [8]. 
     In the volume approach, the immiscible fluids on either sides of the interface 
are marked instead of marking the interface itself. Consequently some special 
techniques are needed to reconstruct the sharp interface. There are a couple of 
mostly used methods that can be categorized in this approach, including the 
marker and cell method (MAC) and the volume of fluid method (VOF). In the 
MAC method the marker particles that are used to mark the fluids, are 
transported in a Lagrangian manner as the interface is advected across the 
domain. The interface is reconstructed using the marker particle density in the 
mixed numerical cells where the marker particles of both of the fluids exist. The 
disadvantage of this method is the computational cost due to the requirement of 
many particles. In the VOF method an indicator function that is the local volume 
fraction of one of the fluids, is used to distinguish between two different fluids. 
The indicator function is locally calculated solving a scalar equation. The 
interface is reconstructed using the indicator function in the mixed cells where its 
values are in the range of zero to one. The disadvantage of this method is the 
difficulties to precisely calculate the interface local curvature [8]. 

2.2 VOF method 

For the present research the VOF method is used to numerically capture the 
bubble surface. In this method an indicator function that is the local volume 
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fraction of one of the fluids, is initialized in each cell. As a result of the fact that 
the fluids are immiscible, each fluid element does not change its material in time. 
Therefore the indicator function satisfies eqn (1) that is called the volume 
fraction equation [9]. In the present study this equation is written in term of the 
volume fraction of water. 

 ( ) ( ) ( ) 0, =+= iiwaterwatertwaterwaterwater v
Dt
D αραρα  (1) 

where ρ  is the density, α  is the volume fraction and v  is the velocity. In this 
paper the equations are written in the tensor form. 
     Solving eqn (1) using the lower order schemes, leads to losing the interface 
sharpness due to the numerical diffusion. Using the higher order schemes is also 
not suitable because they make the solution unstable. Several techniques have 
been proposed to precisely predict a sharp interface using the VOF method. One 
of the accurate techniques is to represent the interface by a piecewise linear 
surface. In this geometrical technique the interface in each cell is represented by 
a plane in 3D or a line in 2D that is perpendicular to the local gradient of the 
volume fraction. At the present study, Young’s method is used to calculate the 
local gradient of the volume fraction. After calculating the orientation of the 
linear surface in each cell, its position can be obtained by knowing the volume 
fractions of both of the fluids. 

2.3 Governing equations 

In the VOF method the fluid flow equations are written in terms of the mixture 
properties to make a single set of the governing equations for both of the fluids. 
The mixture properties can be calculated using eqn  (2) that is written in terms of  

general fluid property ϕ . 

 waterwaterairairmix ϕαϕαϕ +=  (2) 

     Equation (3) is the continuity equation. 

 ( ) ( ) 0, =+ iimixtmix vρρ  (3) 

     Equation (4) is the momentum equation. 

 ( ) ( ) 0,,,
=−−++ jiijjiijmixtjmix Fpvvv τρρ  (4) 

where p  is the pressure, F  is the body force due to the surface tension and τ  
is the viscous stress. Equation (5) is used to calculate the viscous stress tensor. 

 ( )jiijmixij vv += µτ  (5) 

where µ  is the viscosity. 
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     At the present study, the total energy and temperature are treated as mass-
averaged variables. The mass-averaged variables are calculated using eqn (6) 
that is written in term of a general variable Χ  [10]. 

 
waterwaterairair

airwaterwaterairairair

ραρα
ραρα

+
Χ+Χ

=Χ  (6) 

     Equation (7) is the energy equation. 

 ( ) ( )( ) ( )
iimiximixitmix TkpEvE
,,, =++ ρρ  (7) 

where E  is the total energy, T  is the temperature and k  is the thermal 
conductivity. 
     The total energy and temperature fields are related together using eqn (8). 

 ii
mix

mixP vvpTcE
2
1

_ +−=
ρ

 (8) 

where Pc  is the constant pressure specific heat. 
     The ideal gas equation is used to calculate the variable air density. 

2.4 Surface tension 

A continuum surface force model (CSF) is used to take the surface tension 
effects into account [11]. The surface tension is written in term of the pressure 
jump across the interface. The pressure jump is related to the interface curvature 
that is the divergence of the interface unit normal. Applying the divergence 
theorem, the surface tension can be expressed as a volume force. This volume 
force that can be calculated using eqn (9) is added to the momentum equation as 
a source term. 

 ( )waterair

iwatermF
ρρ

καρ
σ

+
=

5.0
,  (9) 

where σ  is the surface tension and κ  is the interface curvature. 

2.5 Numerical schemes 

FLUENT CFD software is used to numerically solve the governing equations 
applying the finite volume method. SIMPLE pressure based algorithm is applied 
to solve the set of governing equations. A first order implicit time integration 
method is used for the temporal discretization. The power law first order scheme 
is used for discretization of the convective terms. 
     According to the axisymmetry of the flow field, the equations are written in a 
cylindrical coordinate system. The line that is perpendicular to the walls and 
passes the bubble center is chosen as the axis of the cylindrical coordinate.  
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Because of the symmetry with respect to this axis, the equations are solved in a 
plane passing the axis. Therefore the solution domain is simply a rectangle. 
     The upper and lower sides of the rectangular solution domain are the walls for 
which, the no-slip boundary condition is imposed. The axis boundary condition 
is imposed on the right side of the domain and a constant static pressure is 
imposed on the left side. The constant static pressure boundary is sufficiently 
away from the axis. Therefore the variable pressure field around the oscillating 
bubble is not affected by the constant pressure boundary. 
     GAMBIT grid generation software is used to generate the two-dimensional 
structured numerical grids. The numbers of the cells used for the different cases 
are in the range of 8500 to 15000. The numerical grids are examined to result 
grid independent solutions. 

3 Problem description 

A bubble with the initial diameter of 1mm is considered between a couple of 
parallel rigid walls that are large in comparison with the bubble size. Therefore 
the flow field is axisymmetric with respect to an axis that is perpendicular to the 
walls and passes the bubble center. For the different cases, the values of 20, 40, 
60, 80 and 100 are assigned for the initial inside to outside pressure ratio of the 
bubble. This parameter is represented by (pin/pout)initial. For each value of 
(pin/pout)initial, the distance from the bubble center to each wall is non-
dimensionalized with the maximum bubble radius. The non-dimensional 
distances from the bubble center to the lower and upper walls are represented by 
γ1 and γ2 respectively. The value of γ1 is kept 1 for all of the cases. The values of 
γ2 are in the range of 1 to 2.5 for the different cases. 
     To find the bubble maximum radius, a free bubble oscillation is simulated for 
each value of (pin/pout)initial. For the initialization of the numerical solution, the 
initial temperature inside the bubble should be calculated. Assuming an 
isentropic process between the initial and equilibrium conditions, eqns (10) and 
(11) can be used: 
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where R  is the bubble radius and k  is a constant value that is 1.4 for the 
present study. 
     Equation (12) is obtained by applying a force balance at the equilibrium 
condition. 

 
mequilibriu

outmequilibriuin R
pp σ2

, =−  (12) 
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     Eliminating pin,equilibrium in relating eqns (10) and (12), the equilibrium bubble 
radius can be obtained for the different values of (pin/pout)initial. Assuming that the 
inside and outside temperatures of the bubble have the same values at the 
equilibrium condition, eqn (11) can be used to find the temperature inside the 
bubble at the initial condition.  
     To indicate the importance of the buoyancy force in analyzing the bubble 
oscillation, a non-dimensional parameter is usually used in the literature. This 
parameter that is represented by ∆ is defined by eqn (13). 

 
Vout

water

pp
gR
−

=∆ max2 ρ
 (13) 

where g is the gravity acceleration and pV is the vapor pressure. The effects of 
the buoyancy force are negligible as long as the value of ∆ is less than 0.3 [12]. 
For the present study the effects of buoyancy force are negligible. 

4 Numerical results 

Figure 3 shows the numerical simulation of a bubble oscillation between a 
couple of parallel walls. The initial inside to outside pressure ratio of the bubble 
is 100 and the non-dimensional distances from the bubble center to both of the 
walls are 1. The necking process, splitting and formation of the round jets toward 
the walls are successfully simulated. The instantaneous bubble shapes are 
qualitatively in good agreement with the experimental observations performed 
by Ishida et al. [7]. The numerical and experimental results cannot be 
 

                

      

Figure 3: Simulation of a bubble oscillation between a couple of parallel 
walls, (pin/pout)initial = 100, γ1,2 = 1. 

                     

Figure 4: Experimental observation of a bubble oscillation between a couple 
of parallel walls, γ1,2 = 1.1, [7]. 
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quantitatively compared, because neither the initial pressure inside the bubble is 
possible to be measured nor the equilibrium bubble radius. 
     Figure 4 shows the experimental observations carried out by Ishida et al. In 
the experiment, the non-dimensional distances of the bubble center to both of the 
walls are 1.1. 
     Figures 5 and 6 show the velocity vector field obtained by the numerical 
simulation of the case for which (pin/pout)initial is 100 and both of γ1 and γ2 are 1. 
Figure 5 demonstrates the creation of a stagnation point at the point of splitting 
and the formation of the round jets toward the walls. Figure 6 shows the velocity 
vector field around one of the daughter bubbles at the moment of the creation of 
a hole by the round jet. 
     Figure 7 shows the bubble shapes at the moment of splitting, obtained by the 
numerical simulation of the different cases. For each value of γ2, the different 
bubble shapes corresponding to the different values of (pin/pout)initial, are shown in 
a single picture. The bigger bubble shapes correspond to the higher values of 
(pin/pout)initial. In this figure the bubble shapes are shown just for the values of γ2 
which are in the range of 1 to 1.5, because the splitting process does not occur 
for the higher values. For the value of γ2 equal to 1.5, the splitting process does 
not occur if the value of (pin/pout)initial is higher than 20. It is also demonstrated 
from fig. 7 that for the higher values of γ2, the upper daughter bubble has the 
smaller sizes, but the size of the lower daughter bubble remains fixed. This 
behaviour is consistent with the other experimental observations carried out by 
Ishida et al. [7]. In that experiment, the value of γ1 is 1.3 and the value of γ2 is 
0.9. The experimental observations are shown in fig. 8. 
 

 

Figure 5: Velocity vector field at the moment of splitting, (pin/pout)initial = 100, 
γ1,2 = 1. 
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Figure 6: Velocity vector field at the moment of the creation of a hole, 
(pin/pout)initial = 100, γ1,2 = 1. 

       
γ2 = 1                                                                      γ2 = 1.1                                                                      γ2 = 1.2 

       
γ2 = 1.3                                                                      γ2 = 1.4                                                                      γ2 = 1.5 

Figure 7: The bubble shapes at the moment of splitting for the different 
cases. 

             

Figure 8: Experimental observation of a bubble oscillation between a couple 
of parallel walls, γ1 = 1.3 and γ2 = 0.9, [7]. 
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γ2 = 1.0                                        γ2 = 1.1                                        γ2 = 1.2                                        γ2 = 1.3 

          
γ2 = 1.4                                        γ2 = 1.5                                        γ2 = 1.6                                        γ2 = 1.7 

          
γ2 = 1.8                                        γ2 = 1.9                                        γ2 = 2.0                                        γ2 = 2.1 

          
γ2 = 2.2                                        γ2 = 2.3                                        γ2 = 2.4                                        γ2 = 2.5 

Figure 9: Bubble shapes at the moment of creation of a hole for the different 
cases. 

     Figure 9 shows the bubble shapes near the lower wall at the moment of 
creation of a hole. The results are obtained by the numerical simulation of the 
different cases. For each value of γ2, the different bubble shapes corresponding to 
the different values of (pin/pout)initial, are shown in a single picture. The bigger 
bubble shapes correspond to the higher values of (pin/pout)initial. It is demonstrated 
from this figure that as the value of γ2 increases, the diameter of the induced 
round jet toward the lower wall decreases. Also for the cases without splitting, 
the bubble near the lower wall has bigger sizes than the cases with splitting. 
     Figure 10 shows the effect of the value of (pin/pout)initial on the jet velocity for 
the cases for which γ2 tends to infinity. The velocities are measured at the 
moment of the creation of a hole. The jet velocity of the case for which the value 
of (pin/pout)initial is 20, is used to non-dimensionalize the velocities of the other 
cases. This figure demonstrates that increasing the value of (pin/pout)initial leads to 
increasing the jet velocity. 
     Figure 11 shows the effect of the values of γ2 and (pin/pout)initial on the jet 
velocity toward the lower wall at the moment of the creation of a hole. For each 
value of (pin/pout)initial, the jet velocities are non-dimensionalized with the jet 
velocity of the case for which γ2 tends to infinity. All of the non-dimensional 
velocities have the values higher than 1. Therefore it is demonstrated from this 
figure that the upper wall increases the jet velocity toward the lower wall. For 
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each value of γ2, the higher values of (pin/pout)initial result the higher increases in 
the jet velocity, because the kinetic energy of the surrounding liquid is higher for 
the higher pressure ratios. For each value of (pin/pout)initial, the jet velocity toward 
the lower wall increases with increasing the value of γ2 up to a certain limit. It 
can be a result of the fact that for the values of γ2 higher than 1, most of the plane 
jet kinetic energy is transferred to the round jet induced toward the lower wall. 
For the value of (pin/pout)initial equal to 20, this limit is 1.6. But for the higher 
values of (pin/pout)initial this limit is 1.5. One of the features of the cases for which 
the value of (pin/pout)initial is 20, is that the splitting process occurs also at the 
value of γ2 equal to 1.5. Therefore it can be concluded that as long as the splitting 
process occurs, the jet velocity toward the lower wall increases with increasing 
the value of γ2. To interpret this result, it can be stated that for the cases without 
the splitting process, the induced plane jet is weak and can not sufficiently 
intensify the induced round jet during the bubble compression. 
 

 

Figure 10: The jet velocity versus the value of (pin/pout)initial at the moment of 
the creation of a hole for the cases for which γ2 tends to infinity. 

 

Figure 11: The jet velocity versus the value of γ2 at the moment of the creation 
of a hole for the different values of (pin/pout)initial. 
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Figure 12: The time of the creation of a hole versus (pin/pout)initial for the cases 
for which γ2 tends to infinity. 

     Figure 12 shows the effect of the value of (pin/pout)initial on the time of the 
creation of a hole, for the cases for which γ2 tends to infinity. In this figure, the 
times are non-dimensionalized with the time of the creation of a hole for the case 
for which the value of (pin/pout)initial is 20. It is demonstrated from this figure that 
for the higher values of (pin/pout)initial the process that leads to the creation of a 
hole takes more time. 
     Figure 13 shows the effects of (pin/pout)initial and γ2 on the time of the 
creation of a hole. For each value of (pin/pout)initial, the times are non-
dimensionalized with the time of the creation of a hole for the case for which 
γ2 tends to infinity. Figure 13 demonstrates that for each value of (pin/pout)initial, 
the process that leads to the creation of a hole takes more time for the lower 
values of γ2. 
 

 

Figure 13: The time of the creation of a hole versus the value of γ2 for the 
different values of (pin/pout)initial. 
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5 Conclusion 

The jet formation through the oscillation of a bubble between a couple of parallel 
walls is numerically simulated using FLUENT CFD software. The volume of fluid 
method is used to capture the bubble surface applying a geometric reconstruction 
method. The simulations are performed for several initial inside to outside pressure 
ratios of the bubble and different distances from the walls to the bubble center. The 
results are qualitatively in good agreement with the experimental observations 
performed by Ishida et al. [7]. It is concluded that the existence of each wall 
increases the velocity of the round jet induced toward the other wall. Keeping the 
position of one of the walls fixed, the velocity of the jet toward that wall increases 
with increasing the other wall distance from the bubble center up to a certain limit. 
For the distances larger than this limit, the bubble splitting does not occur. Also it 
can be concluded that for the smaller distances from the walls to the bubble center, 
the process that leads to the jet formation takes more time. 
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