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Abstract 

A new approach has been developed for modelling the transport of charge and 
mass through electrolytes. This approach utilizes a dynamically computed 
electric field that contributes to the transport of charged species in much the 
same way a flow field contributes to the transport of mass. Since a 
multidimensional electric field is computed, the effects of this field on redox 
reactions occurring in the electrolyte or at the interface of an electronic and ionic 
conductor can be modelled. Transport of species due to diffusion and convection 
is also considered, and the overall transport system is modelled using a control 
volume technique with a modified Peclet number. Electroneutrality and the 
conservation of species are incorporated into the model. This method produces a 
universal model capable of predicting one, two, or three-dimensional mass and 
charge transport for electrochemical phenomena where macroscopic anodic and 
cathodic couples exist. This model has the potential to simulate forms of 
localized corrosion and energy storage and generation applications such as 
batteries and fuel cells. The theoretical development and validation of this new 
model for a two dimensional case study is presented.  
Keywords:  electrochemistry, modelling, computational fluid dynamics, control 
volume technique, polarization, electric field, electrolyte. 

1 Introduction 

The open literature contains many articles on modelling of charge and mass in 
numerous electrochemical systems. Some examples of these systems include: 
fuel cells, batteries, pitting corrosion, and crevice corrosion. In such systems the 
transport of charged species is usually significantly affected by the electric field. 
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However, the transport of charged species can also affect the electric field, which 
in turn affects the further transport of charged species. In crevice corrosion many 
important phenomena depend upon the electric field caused by the transport (or 
resistance to transport) of charged ions between predominantly anodic and 
cathodic areas. Even the rate of electrochemical reactions occurring at cathodic 
and anodic areas has been shown to be dependent on the electric field [1]. The 
methods presented in this paper represent the development of a multi-
dimensional model that simultaneously considers the dynamic electric field, its 
affect on transport and redox reaction kinetics, and the interaction of these with 
the field. 
     One of the major applications of this model is the simulation of crevice 
corrosion. This model has been developed to simulate crevice corrosion by 
considering not only the crevice, but also the coupled reactions occurring along 
the bold surface, using a single set of equations that spans the whole 
computational domain. However, the application of this multi-dimensional 
model is not limited to localized forms of corrosion. Although not presented 
here, the method outlined in this paper may be applied to model crevice 
corrosion and other electrochemical systems, such as batteries and fuel cells.  

2 Modelling transport and the electric potential field 

The model utilizes the comprehensively developed control volume technique 
described by Patankar [2].  Infinitely dilute solution theory is used as the basis of 
the equation describing the electric field. Two main equations are numerically 
solved for the multi-dimensional transport:  
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     Eqn (1) describes the transport of charged species due to concentration and 
potential gradients. Eqn (2) describes the electric field established due to 
concentration gradients of charged species (diffusion potential), physically 
separated but electrically conserved anodic and cathodic reactions, and 
electroneutrality. These two equations are solved independently. Eqn (1) is 
solved utilizing established techniques [2], and the development of its numerical 
representation is shown in Section 2.1. Eqn (2) is solved using the Alternating-
Direction Implicit Method, although other methods could be used. During the 
numerical solution of eqn (1) a differencing scheme, such as The Upwind 
Scheme, The Hybrid Scheme, or The Power-Law Scheme, utilizes a Peclet 
number [2]. (The Power-Law Scheme was utilized during the numerical 
predictions presented in this paper.) However, since the Peclet number does not 
consider the transport of species due to migration, a new Peclet number is 
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defined. This Peclet number is similar to the Peclet number proposed by Heppner 
[3], but also considers convection, as well as migration and diffusion: 
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     Similar to eqn (1), the migration term in eqn (3) acts as an amendment to the 
flow field that is specific to the charge and mobility of each species. This does 
not significantly increase the complexity of the numerical solution of eqns (1) or 
(3).  

2.1 Solving the transport equation 

The development of the two-dimensional transport model is shown below. Effort 
has been taken to present this development and associated nomenclature in a 
manner that corresponds to that described by Patankar [2]. This new transport 
model (easily capable of being developed in three dimensions) is particularly 
easy to solve using numerical methods due to the manner in which the flux is 
integrated over each control volume. This integration method maintains the 
expression describing the migration of ions in its simplest form with only two 
variables to be solved for: the concentration of species and gradient of potential. 
The term describing the migration of ions is the first term on the right hand side 
of eqn (4). The flux of each dissolved species under the influence of a potential 
field (assuming infinitely dilute solution theory) can be given as [4]: 
 
 VΦN iiiiiii CCDCuz +∇−∇−= F . (4) 
 
     The subscript, i, indicating an individual species is dropped in the following 
development for clarity. It is, however, assumed that each of the following 
equations in this sub-section can be written for each dissolved species. From eqn 
(4) it can be seen that the flux in the x-dimension and y-dimension can be 
expressed by: 
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and the integration of eqn (4) gives: 
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     Eqn (7) is the equation developed in Patankar [2] for convective-diffusive 
problems. However, in this paper the fluxes in eqn (7) include the migration 
terms expressed by eqns (5) and (6). Thus, the numerical techniques that have 
evolved during the development of the Control Volume method may be utilized 
to solve convective-diffusive problems with electromigration. Eqn (7) is the 
discretized form of eqn (1). The mass flow rates through the faces of a control 
volume are given by: 
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     The migration term in the current development occurs as an amendment to the 
flow field term. The addition of these two terms creates a flow field that does not 
satisfy the volume continuity equation for the case of incompressible flow. This 
is realistic when considering the migration of a single species. However, 
conservation of species due to transport is assured in this model because any flux 
leaving a control volume is the flux entering a neighbouring control volume. 
This is a property of the Control Volume technique. For a flow field that does 
not satisfy the volume continuity equation, eqn (7) can be rearranged to be: 
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where: 
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     The calculation of the function, ( )nPA , depends on the differencing scheme 
as indicated earlier in this paper. 

2.2 Development of an equation for the electric potential field 

The following is the development of an equation that describes the electric field 
in the electrolyte. This equation does not include effects very close to the 
electrode surface in the charge double layer. A material balance for a single 
species shows that the change in concentration of a species depends on the 
divergence (due to flux) and production of that species [4]: 
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     Multiplying eqn (21) by Fiz  gives: 
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     This model is designed to predict concentration profiles that are electrically 
neutral. The electroneutrality assumption has been shown to be a very good 
approximation of reality [4]: 
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     Substituting eqn (23) into eqn (22) gives eqn (24). 
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     Current in an electrolyte solution is: 
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     Substituting eqn (25) into eqn (24) gives: 
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     Eqn (26) implies there is no divergence of electrical current except for the 
transport of charge created by physically separated anodic and cathodic 
reactions. Current density is given by [4]: 
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     From eqn (27), the divergence of current is therefore: 
 
 ( ) ∑ ∑+∇⋅∇−∇⋅−∇=⋅∇

i i
iiiii CzCDz vΦi FF κ , (28) 

 
where the conductivity is: 
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     The last term of eqn (28) is zero since the system is assumed to be electrically 
neutral. Substituting eqn (26) into eqn (28) and assuming constant conductivity 
and diffusion coefficients over a control volume yields an equation that describes 
the electrical field: 
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2.3 Electroneutrality 

An analogous equation to eqn (1) can be derived as follows; substituting eqn (4) 
into eqn (21) gives: 
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     Using the chain rule to differentiate eqn (31) and rearranging: 
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     Comparison of eqn (32) with eqn (1) shows that there is an additional term on 
the right hand side of eqn (32). The absence of this term in eqn (1) is one of the 
inherent strengths of the model presented in this paper. Numerically, this extra 
term is a species source term dependent on charge density. This previous 
statement is made assuming a more rigorous definition of near-electroneutrality 
for a medium with uniform dielectric constant [4]: 
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     If eqn (32) was solved using the actual potential field in the system, and no 
errors were introduced during the numerical procedure, conservation of species 
should occur; however, the guarantee of species conservation for all situations 
(assured for the model presented in this paper) is not evident for the numerical 
solution of eqn (32) i.e., when rounding errors occur.  
     There is one disadvantage of the new model. In deriving eqn (30) 
electroneutrality was assumed. However, discretization of eqns (1) and (30) will 
introduce errors in their solution and therefore there is no guarantee of 
electroneutrality. A predicted concentration that differs significantly from 
electroneutrality would be unreasonable. However, if the derivation presented in 
section 2.2 is repeated with all affects on the Laplacian of the electric field 
neglected except for non-electroneutrality (in the current model any non-
electroneutrality would be caused by numerical error): 
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     Therefore, the Laplacian of the electric potential expressed in eqn (34) may be 
thought of as a representation of the numerical error generated over the previous 
time step. Then the Laplacian of the electric potential needed to cause the 
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transport of charge that will eliminate any error (in regards to electroneutrality) 
that has occurred up to the current time step over the next time step is: 
 

 ∑ ∂
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     Adding eqn (35) to eqn (30) yields eqn (2). Thus, eqn (2) ensures an 
electrically neutral system is predicted. Eqn (2) is also generally not a stiff 
equation, unlike eqn (33), due to the significantly larger value of conductivity 
when compared with the dielectric constant, for most systems. 

2.4 Boundary conditions 

For the numerical solution of eqns (1) and (2) boundary conditions are needed. 
Three situations existing at the boundary have been considered for the simulation 
presented in Section 3: bulk electrolyte, a barrier through which no mass or 
charge is transported, or a barrier through which charge and mass is only 
transported via an electrochemical reaction (i.e. an electroactive surface). For the 
situation that involves bulk electrolyte the boundary condition for eqn (1) may be 
given as 
 
 ACi = , (36) 
and for eqn (2) 
 B=Φ . (37) 
 
     For the situation where a barrier through which no charge or mass is 
transported exists at the boundary, the boundary condition for eqn (1) is 
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and for eqn (2) is 
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x
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.      (39) 

 
     For the situation where an electroactive area is present at the boundary, the 
boundary condition for eqn (1) is eqn (38), and for eqn (2) it is eqn (37). 

3 Validation and discussion 

The model presented in this paper was used to model the moving boundary 
experiment of Fu and Chan [5]. The experiment consisted of a small diameter 
glass tube filled with 0.1 M KNO3. One end of the tube was open to a beaker 
containing a platinum cathode and the other end of the tube was plugged with an 
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Ag anode. Upon application of a 1 mA current silver ions were dissolved into the 
electrolyte and were transported along the glass tube. During this process a 
transition zone was formed between areas containing mostly Ag+ or K+. This 
transition zone, or boundary, was made visible by a small addition of ascorbic 
acid and its progression along the glass tube was measured. Fig. 1 shows this 
experimental data along with the movement of the boundary predicted by the 
current model and an excellent fit is evident. For this simulation 200 nodes in the 
direction of migration and 10 nodes in the radial direction were used along with 
a time step of 0.001 s. The width of a control volume was 0.0002 m in both 
directions. A grid dependency study has been completed. The numerical model is 
stable when simulating using a coarser spatial and temporal grid; however, as the 
grid size is increased the rate of predicted transport also increases. For 
simulations conducted using a finer spatial and temporal grid than the validation 
simulation no change in the rate of transport was evident and the results 
corresponded with the validation results.  
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Figure 1: Experimentally determined and predicted boundary position. 

     The concentration of Ag+, as predicted by the model over two dimensions, 
can be seen in fig. 2. Although significant concentration gradients are only 
established along the length of the tube during the simulation, the validation is 
considered to be successful in two dimensions. This is because the prediction of 
insignificant radial concentration gradients matches experimental observations 
and verifies that errors did not propagate in the radial direction during the 
coupled solution of eqns (1) and (2). In fig. 2 the transition region, where the 
concentration of Ag+ approaches zero, can be seen at approximately 1 cm from  
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Figure 2: Predicted Ag+ concentration after 10 mins. 
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Figure 3: Predicted ion concentrations after 15 mins. 

the silver anode. Also, a region of relatively constant concentration of Ag+ exists 
from approximately 0.5 cm to the start of the transition region at about 0.75 cm 
from the anode. This region of relatively constant concentration expands in 
length at later times; however the concentration of Ag+ in this region is steady at 
approximately 0.09 M. Since the model predicts no significant concentration 
gradients in the radial direction at any time, predicted concentrations can be 
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expressed (at a set time) as a function of distance from the anode (fig. 3). Fig. 3 
shows the predicted concentrations of all species in the electrolyte after 15 mins. 
The boundary between Ag+ and K+ can clearly be established at 1.5 cm from the 
anode. Fig. 3 also shows predicted concentrations that result in electroneutrality 
of the electrolyte and dissolved species.   
     It was found that the numerical solution of this model was relatively 
computationally inexpensive and stable when compared with other electrolyte 
transport models the authors have worked with [1, 6]. A notebook PC equipped 
with a 1.5 GHz Intel Celeron M processor with 504 MB of RAM was able to 
solve the model presented here in approximately ten hours. Since the model is 
relatively computationally inexpensive it is expected that simulations times for 
much more complex systems will be short. This illustrates the usefulness of the 
methods outlined here, and the possible applicability of these methods to the 
transport of charge and mass through many different electrolytes in many 
different industrial settings.  

4 Conclusions 

A new method was presented for modelling the transport of charge and mass 
through electrolytes. This utilizes a control volume technique coupled with the 
predicted electric field. This method was validated against the experimental data 
of Fu and Chan [5] and excellent agreement was found. It is proposed that this 
new method may be useful to simulate a wide variety of electrochemical systems 
where multi-dimensional mass and charge transport is important, due to the 
stability and computational ease of the numerical solution outlined here.   
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