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Abstract 

The Smoothed Particle Hydrodynamic (SPH) method, originally developed 
during the 1970s to solve astrophysical problems, has shown many attractive 
features that have led many authors to try to use it to solve fluid flows problems. 
Its free surfaces tracking capabilities and its straightforward implementation of 
multi-materials interactions make it well suited for complex flows modeling. 
     The first part of the paper is devoted to a general overview of the method. In 
particular, a brief description of a recently proposed flux term, implemented in 
this paper, is introduced. The addition of the flux terms, based on a Riemann 
solvers approach, enhances the stability and smoothness of field variables, 
leading to more accurate pressure fields.  
     In order to test the effectiveness of the selected approach, in the second part 
of the paper, the Dam break problem is discussed. Furthermore, the classical 
Poiseuille flow problem is considered as well. 
     The numerical results are very satisfactory, exhibiting the effectiveness of the 
implemented approach regarding, at least, the selected kind of problems. 
Keywords: SPH method, Riemann solvers, Dam break  Poiseuille flow.  

1 Overview of the SPH method 

The Smoothed Particle Hydrodynamic (SPH) method is a numerical technique 
that was initially developed during the 1970s to solve astrophysical problems 
(Monaghan [1]). It is a fully meshless particle method that is easy to code. Its 
meshless and Lagrangian nature make it very attractive for solving fluid flow 
problems where free surface boundary conditions and large strain rates may be 
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involved. The computational domain is filled with particles carrying flow field 
information (e.g. pressure, velocity, density) and is capable of moving in space. 
Particles are the computational frame used in the method to solve the flow 
describing PDEs, as a grid or a mesh to calculate spatial derivatives is not 
needed. 
     We shall refer to 2D cases throughout the rest of the paper, even though all 
the assumptions and results can be extended to a 3D case with little effort. The 
key idea on which the method is based is the well-known use of a convolution 
integral with a Dirac delta function to reproduce a generic function f(x): 
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     In the SPH method, the Dirac function is replaced by a “bell-shaped” kernel 
function W (it ‘mimics’ the Dirac delta function), and the generic function f(x) is 
reproduced with the following convolution integral: 
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     The kernel function is chosen to be non-negative, even and with a support 
domain Ωx (usually circular) whose radius is a multiple of a length h, named 
smoothing length. The kernel function is zero outside the support domain and the 
smoothing length serves as a scaling parameter for its arguments. It also has the 
property of converging to the Dirac function as the smoothing length approaches 
to zero. 
     The kernel function must satisfy some conditions in order to correctly 
reproduce functions up to a given order k, in a Taylor series expansion. Let us 
consider a 1D case where a function f(x) is approximated about point x by a 
Taylor series up to the order k: 
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     If eqn (3) is substituted in eqn (2), the SPH approximation of function f(x) 
takes the form: 
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     If a correct reproduction of function f(x) is searched up to the order k, then the 
kernel must satisfy the following conditions:  
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i.e. every kernel moment has to be equal to zero (except for the 0 order one that 
has to be equal to 1).  
     It is possible to obtain the expression for the SPH approximation of a function 
gradient by using eqn (2) and the Gauss-Green formula: 
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here: 
- the kernel is differentiated with respect to the x’ coordinate; 
- n represents the normal to the support domain boundaries; 

     The first term of the RHS of eqn (6) can be zero if the support domain is not 
truncated by the computational domain boundaries, as the kernel is zero on the 
support domain boundaries. Another case when the term can be zero is when the 
support domain is truncated by the computational domain boundaries but there 
exists a boundary condition forcing the function f(x) to vanish on the boundaries 
(it may be the case when f(x) represents a velocity and a no-slip condition has to 
be enforced on the computational domain boundaries). If the first term of the 
RHS of eqn (6) is zero, then the SPH approximation of f(x) gradient takes the 
form: 
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     Eqn (7) is often used, even when the first term of the RHS of eqn (6) does not 
vanish.  
     It is possible to find the conditions the kernel must meet in order to correctly 
reproduce the first derivative of a given function f(x), up the order k of its Taylor 
series expansion. They are similar to the conditions of eqn (5) and it can be 
shown that they are related. The reproducing conditions for a function first 
derivative are expressed as follows: 
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     The most frequently used kernels involve truncated Gaussian and spline 
curves. The kernel used in this paper is the cubic spline function with compact 
support, whose expression is as follows (see also the plot reported in Figure 1): 
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Figure 1: Third order cubic spline kernel plot. 

     The condition forcing the kernel to be non-negative makes it impossible to 
meet condition of eqn (5) for k = 2 and condition of eqn (8) for k = 3. 
Furthermore, the use of an even function as a kernel automatically satisfies 
conditions for exact reproduction of linear functions and second order function 
derivatives. Therefore, it is possible to correctly reproduce this kind of functions 
only with a non-negative kernel like the cubic spline. 

2 Particle approximation related problems 

The previous equations need to be evaluated in a discrete manner in order to 
develop a numerical technique from the theoretical framework shown above. In 
the SPH method, the discrete evaluation is made by means of the particle 
approximation.  The continuous space is then replaced by a finite set of particles, 
each one of them carrying a mass, an area and other problem related information. 
     Hence, particle approximations of eqns (2) and (7) take the form: 
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here: 
- xi and xj represent the i and j particle positions in the given frame of 

reference; 
- ΔAj represents the tributary area associated with particle j; 
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- Summations are extended to all the particles located within the support 
domain of particle i; 

     The ability of the kernel to exactly reproduce a function and its derivative up 
to a certain order vanishes when the particle approximations shown in eqns (10) 
and (11) are performed. This means that the particle approximations of the 
consistency conditions of eqns (5) and (8), which are shown below for a 1D case: 

   kpxxxWxxxm p
jji

n

j

p
jiip ...0    )()( 0

1

 


  (12) 

   kpxxxWxxxm p
jji

n

j

p
jiip ...0    ')()(' 1

1

 


  (13) 

are no longer exactly satisfied.  The afore-mentioned problem is often referred to 
as the particle inconsistency problem. 
     Another issue related -but not limited to the particle inconsistency problem 
arises when particle approximation of eqn (11), for evaluating a function 
gradient, is performed at a particle whose support domain overlaps with the 
computational domain boundaries. As the first term of the RHS of eqn (6) is 
often neglected, the particle approximation shown in eqn (11), besides suffering 
from the particle inconsistency related errors, suffers from the ones arising from 
this further approximation. This problem is often referred to as the particle 
deficiency problem and it may cause relevant errors both in evaluating a function 
derivative close to boundaries and in imposing a boundary condition on a field 
variable. 
     Many authors have proposed corrective strategies to tackle particle 
approximation related problems. Randles and Libersky [2] used ghost particles to 
treat a symmetrical surface boundary condition. Ghost particles have also been 
used in a various manners for particle approximations near boundaries by Takeda 
et al. [3], Morris et al. [4] and Ferrari et al. [5]. 
     An approach that tries to overcome these issues without the use of any kind of 
ghost particles has been proposed by Liu et al. [6]. The method proposed by the 
authors (briefly named RKPM) consists in multiplying the kernel function by 
corrective coefficients in the particle approximation, in order to restore the 
particle approximation of the consistency conditions of eqns (12) and (13). By 
using the RKPM method, it is possible to find corrective coefficients to attain 
higher order consistency. The computational cost of the SPH simulation 
increases as it is necessary to solve least squares problem and to invert 
symmetrical square matrixes. 
     Another corrective approach is the one proposed by Liu and Liu [7]. The 
authors use the Taylor expansion series to offset and correct the standard particle 
approximations of eqns (10) and (11) for reproducing a function and its first 
derivative. Computational cost is increased even in this case, as it is necessary to 
perform matrix inversion in order to obtain a corrective matrix for the standard 
SPH approximation. 
     Nevertheless, it is possible to obtain realistic and accurate simulations with 
SPH despite these issues. The main reasons relies on the fact that the momentum 
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equation can be set up so that the interaction terms between each pair of particles 
are symmetrical, thus allowing for momentum conservation. 

3 SPH for fluid flow problems 

In this paper, uncompressible fluids are treated using the weakly compressible 
fluid approximation. This means that pressure is not obtained by solving a 
Poisson equation, as in the uncompressible case but using a stiff equation of state 
instead. The equation used here has successfully been employed before by 
Monaghan [8] and Ferrari et al. [5], among others, and computes the particle 
pressure pi this way: 
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here: 
- k0 is a reference pressure; 
- ρi  represents the density at particle i; 
- ρ0 represents a reference density of the fluid when relative pressure is 

zero. 
     The k0 value must be chosen in order to have a speed of sound, which is at 
least ten times higher than the highest fluid velocity involved in the problem: in 
this way it is possible to limit the density variations to around 1% of reference 
density and to not introduce prohibitively small time steps (see Monaghan [8]). 
Finally, please note that if eqn (14) is employed then particle sound speed ci has 
the following expression: 
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The particle approximation used for the continuity equation is the following: 
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here: 
- vj represents the velocity for particle j; 
- mj  represents the mass of particle j. 

     In eqn (16), velocity derivatives are calculated slightly differently from what 
would be suggested by equation (11). It is possible to show that with this 
modification, involving velocity differences in the equation instead of just the 
term vj, it is possible to exactly reproduce gradients of constant velocity fields. It 
can also be shown that using equation (15) is like using a modified kernel, which 
satisfies the particle approximation for consistency conditions (13) up to the 0th 
order. The use of such equation, which has proved to be successful in many 
cases, enhances the accuracy in velocity field divergence calculations, especially 
near boundaries (see Liu and Liu [9]). 
     In this paper, we also selected an approach proposed by Ferrari et al. [5], 
which uses a Riemann solvers based modification of the continuity equation 
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where a central Rusanov flux term is added to the equation. Adding the Rusanov 
central flux term to eqn (16) leads to the following form for the continuity 
equation: 
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here: 
- nij is the unit vector pointing from particle i towards particle j; 
- cij  represents highest sound speed between particle i and j. 

     The addition of the flux terms results in more accurate and smoother density 
field calculations, which lead to more accurate pressure fields. The correction 
acts also as a penalty term for density fluctuations helping in enforcing weak 
compressibility condition. 
     Finally, the particle approximation that has been used throughout the 
computations for momentum equation is the following one: 
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- fi  is the force/mass ratio of the external forces for particle i; 
- 

i
 is the stress tensor at particle i. 

     It is possible to show that this form of momentum equation does not satisfy 
the particle consistency conditions of eqn (13), neither for the 0th order: 
therefore, it cannot be used to reproduce gradients of constant stress fields 
exactly. However, if the terms in the summation of the right hand side of eqn 
(18) are interpreted as forces (per unit of mass) exchanged by each pair of 
interacting particles, it is easy to notice that they are symmetrical, thus allowing 
for particle momentum conservation (when no external forces are present). 

3.1 Inviscid flows computations 

In order to simulate the behavior of inviscid flows we use the following isotropic 
constitutive equation for the stress tensor: 
 Ipii

  (19) 

here: 
- I is the unit tensor. 

     By using eqn (19), the momentum eqn (18) takes this form: 
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     As it has been pointed out in paragraph 3, the momentum equation conserves 
momentum exactly, when there are no external forces acting on the system. 
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3.2 Viscous flows computations 

In order to simulate the behavior of a Newtonian viscous fluid at a laminar 
regime, we use the well-known constitutive equation: 
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here: 
-  

i
  is the strain rate tensor at particle i; 

- µ is the dynamic viscosity of the fluid. 
     We then used the following expression for the particle approximation of the 
strain rate tensor components (see Liu and Liu [9]): 
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     By using eqn (21), the momentum eqn (18) takes this form: 
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4 Numerical examples 

In the following paragraphs we show numerical examples regarding the solution 
of two test cases, one for inviscid flow and the other for a laminar viscous flow. 

4.1 Water column  

The test case regards the solution of the classical Water column (or Dam break) 
problem where a column of water collapses under the effect of gravity and a 
breaking wave impinging on a vertical wall is created thereafter. 
 

Figure 2: Initial particles distribution for the SPH solution of the water 
column problem. 
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     The SPH scheme used to solve this numerical test is the inviscid scheme 
given by eqns (14), (17) and (20). A free-slip boundary condition has been 
enforced on the boundaries by using special ghost particles that are created via 
point symmetry about a layer of boundary particles as in Ferrari et al. [5].  
     Time integration has been performed by using a Runge-Kutta third order 
TVD scheme (see Gottlieb and Shu [10]).  
     At the initial time step, particles are placed on the left side of the tank with 
zero velocity and a hydrostatic pressure distribution, which has been calculated 
analytically according to the equation of state of eqn (14). The initial particle 
distribution can be seen in Figure 2, where the particles are color coded 
according to pressure values (measured in Pa) and distances are in meters. 
     The water column size is 14.6 cm x 28.9 cm, while the tank length is 58.4 cm. 
800 particles have been used in the simulation with spacing of 7.3 mm in both 
vertical and horizontal directions. 
     In Figures 3–5, the results obtained with SPH are shown. Particles are color 
coded according to pressure values (measured in Pa). 
     Even though no comparison with experiments or other numerical solutions 
has been made at this stage, the results, in terms of pressure and particles 
displacement seem very realistic and reasonable. 
 
 

 

Figure 3: SPH solution at time 0.10 s (left) and 0.20 s (right) (color online 
only). 

 

Figure 4: SPH solution at time 0.30 s (left) and 0.60 s (right) (color online 
only). 
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Figure 5: SPH solution at time 0.80 s (left) and 1.00 s (right). 

4.2 Poiseuille viscous flow 

The test case is the classical Poiseuille flow problem, solved with a layer of 
water flowing between two infinite parallel planes. Motion is created by a 
horizontal body force/mass F, whose module has been set to 2·10-4 m/s in the 
SPH simulation.  
     The analytical solution of the problem is known as a series solution. Its 
expression for horizontal velocity vx as a function of time and space is as 
follows: 
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here: 
- L is the distance between the two planes (set to 10-3 m in the SPH 

simulation); 
- ν is the kinematic viscosity of water (10-6 m2/s);  
- z is the transversal coordinate between the planes (z=0 on the lower 

plane). 
     From the first spatial derivative of eqn (24), it is possible to obtain the 
analytical expression for the tangential stresses. 
     The SPH scheme used to solve this numerical test is the viscous scheme given 
by eqns (14), (16), (22) and (23). Boundary conditions have been enforced by 
using ghost particles that are being created by mirroring the liquid particles about 
the boundaries as in Morris et al. [4]. For viscous flows, a no-slip condition is 
required and so ghost particles are assigned an opposite velocity to the liquid 
particles they are created from. To simulate an infinite extension of the domain 
on the horizontal direction, periodic boundary conditions have been used, where 
particles exiting the domain on one side are re-entered in the system from the 
opposite side. 
     Time integration has been performed by using the simple Euler forward-in-
time scheme. 
     At the initial time step, particles are placed between the two planes with zero 
velocity and a uniform zero pressure distribution. The motion is triggered by the 
horizontal body force/mass component F, which is constant in every instant of 
the simulation. Four hundred particles have been used in the simulation with 
spacing of 0.025 mm in both vertical and horizontal directions. 
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Figure 6: SPH solution of unsteady Poiseuille flow at an intermediate time 
step. 

Figure 7: SPH solution of unsteady Poiseuille flow at the steady state. 

     In Figures 6 and 7, a comparison between the SPH solution of the problem 
and the analytical solution of the problem is shown, both for the horizontal 
velocity component (left hand side) and the tangential stresses (right hand side). 
Variables values are non-dimensional and scaled, with l0 =1·10-3 m being the 
scaling length, u0 = 2·10-4 m/s being the scaling velocity and τ0 =4·10-5 Pa being 
the scaling tension. 
     As can be seen from Figures 6 and 7, the SPH solution well agrees with the 
analytical solution. Steady state was considered reached when the average SPH 
solution error was lower than 2%. The error was also lower than this bound 
during all the intermediate instants of the simulation, except for the first ones, 
when the error was found to be higher. 

5 Conclusions 

SPH is a powerful and easy to code numerical tool that can be useful in order to 
solve many fluid flow problems. Its Lagrangian nature makes it particularly 
suitable for simulating free surface flows, but some drawbacks still wait to be 
solved. To this purpose, in order to enhance stability and smoothness of field 
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variables, a Riemann based modification approach of continuity equation has 
been selected and implemented. The numerical elaborations show the capability 
of the method to capture the general features of the Dam break problem. 
Poiseuille test has shown very satisfactory behavior as well.  
     Next step will be the comparison of the results obtained with the selected 
method with experimental and other kind of numerical approaches. 
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