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Abstract 

In the present paper, the recently developed local meshfree method solution of 
thermo-fluid problems is modified from the collocation to the combined 
collocation and weighted least squares approach and upgraded with an  
h-adaptive strategy. A one domain enthalpy formulation is used for modelling 
the solid-liquid energy transport and the liquid phase is assumed to behave as an 
incompressible Newtonian fluid modelled by the Boussinesq hypothesis. The 
involved temperature, enthalpy, velocity and pressure fields are represented on 
overlapping local sub-domains through weighted least squares approximation 
(by a truncated Gaussian weight in the domain nodes) and collocation (at  
the boundary nodes) by using multiquadrics Radial Basis Functions (RBF).  
The transport equations are solved through explicit time stepping. The  
pressure-velocity coupling is calculated iteratively through a novel local  
pressure correction algorithm. The node adaptivity is established through a 
phase-indicator and a node refinement strategy that takes into account the 
dynamic number of neighbouring nodes. The proposed approach is used to solve 
the standard Gobin Le Quéré melting benchmark with tin at Stefan number (Ste) 
0.01, Prandtl number (Pr) 0.02, and Rayleigh number (Ra) 2.5e4. The node 
distribution changes through the simulation as the melting front advances. The 
solid is consequently computed at much lower node distribution density in 
comparison with the liquid, which speeds up the simulation and at the same time 
preserves accuracy. The latter issue has been demonstrated by comparison with 
the results of other combinations of numerical methods and formulations that 
attempted this benchmark in the past. 
Keywords: meshfree, RBF, weighted least squares, collocation, convective-
diffusive problems, adaptation, refinement, melting, fluid flow, Newtonian fluids. 
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1 Introduction 

The computational modelling of multiphase systems has become a highly 
popular research subject due to its pronounced influence in the better 
understanding of nature, as well as in the development of the advanced 
technologies. Melting of the polar ice caps, the global ocean dynamics, various 
weather systems, water transport, soil erosion and denudation, magma transport, 
...; and manufacturing of nano-materials, improving casting processes, fossil and 
renewable energy studies, exploitation of natural resources..., are two typical 
contemporary research fields where multiphase systems play an important role. 
In most cases even the simplest useful multiphase physical models cannot be 
solved in a closed form and therefore numerical solution is required. The 
classical numerical methods, such as the Finite Volume Method (FVM) [4], 
Finite Difference Method (FDM) [5, 6], Boundary Elements Method (BEM) [7] 
and the Finite Element Method (FEM) [8], are used for solving these problems in 
the majority of the simulations [9, 10]. Despite the powerful features of these 
methods, there are often substantial difficulties in applying them to realistic, 
geometrically complex three-dimensional transient problems. A common 
drawback of the mentioned methods is the need to create a polygonisation, either 
in the domain and/or on its boundary. This type of meshing is often the most 
time consuming part of the solution process and is far from being fully 
automated. The numerical simulations of engineering multiphase systems are 
mainly based on the averaged or mixture equations, defined on the arbitrary 
phases, with the interphase conditions, incorporated into the non-linearity of the 
governing equations. The proper numerical solution of these equations requires 
adaptation of the discretization in the vicinity of the moving boundary. The 
principal bottleneck in these types of numerical methods is the time consuming 
re-meshing of the evolving interphase boundaries and phase domains. The 
polygonisation problem is thus even more pronounced. The application of the 
alternative numerical methods to FVM and FEM, such as the mesh reduction 
[11–13] or meshless [14] methods, for phase change problems is relatively rare 
at the present, however the number of respective meshless publications is 
steadily growing. Different adaptive node distributions strategies have been used 
in the past for different numerical methods in order to enhance the numerical 
effectives at physical intense behaviour or boundaries [15–21]; however, this 
paper is focused on the local h-refinement in a meshfree context. The nodes are 
simultaneously added on the computational domain in order to improve the 
numerical approach. The local refinement approach is proposed and 
demonstrated in this paper. 

2 Problem definition 

The physical model solved in this paper is based on the classical De Vahl Davis 
natural convection benchmark test [22] with the phase change phenomena added. 
The phase change splits the domain into two different connected areas, occupied 
by the different phases. The liquid phase is described by an incompressible 

92  Advances in Fluid Mechanics VIII

 
 www.witpress.com, ISSN 1743-3533 (on-line) 
WIT Transactions on Engineering Sciences, Vol 69, © 2010 WIT Press



Newtonian fluid while the solid phase is stationary. The energy transport is the 
same for both phases. The benchmark case was originally proposed by Gobin 
and Le Quéré [3]. The problem is modelled by three coupled PDEs and the 
Boussinesq approximation. The PDEs are mass, momentum and energy 
conservation equations where all material properties are considered to be 
constant.  
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velocity, time, density, pressure, viscosity, body force, enthalpy, thermal 
conductivity, temperature, reference density, thermal expansion coefficient, 
reference temperature, gravitational acceleration, specific heat, liquid volume 
fraction and latent heat, respectively. The pure substance phase change occurs at 
constant temperature and thus the enthalpy is discontinuous at the melting 
temperature. To avoid the numerical instabilities the enthalpy jump is smoothed 
by implementing a temperature interval similar to that in the multicomponent 
phase change process. The liquid fraction is therefore formulated as 
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with ,L FT T  standing for smoothing interval and melting temperature, 

respectively. The results obtained with such phase-change interval smoothing are 
physically reasonable as long as the interval is small enough [23]. The 
introduced smoothing represents a standard approach for solving such problems 
[3]. We limit our subsequent discussion to 2D Cartesian coordinates

; ,p x y    p i  with orthogonal base vectors i  and coordinates p . The 

boundary conditions and the initial state are set on a rectangular domain
0 , 0x W y Hp p     
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with dimensionless quantities introduced as  
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where , , , , , and ( , )H C W H x yT T p p    p stand for hot side temperature, cold 

side temperature, domain boundary, domain interior, domain width, domain 
height and position vector. The problem is characterized by four dimensionless 
numbers: the thermal Rayleigh number, Prandtl number, Stefan number and 
domain aspect ratio, defined as 
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     The problem is schematically presented in Figure 1. 
 
 

 

Figure 1: Problem schematics.  
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3 Solution procedure 

A two level Euler explicit time stepping scheme is used for time discretization. 
The domain and boundary are discretized into N N N    nodes of which N  

nodes are distributed in the domain and  at the boundary. The spatial 

discretization is performed by using the local meshfree method where 
overlapping local subdomains are used. An arbitrary scalar function  is 
represented on each of the local subdomains as 

  (12) 

where  stand for the number of basis functions, interpolation 

coefficients and basis functions, respectively. The basis could be selected 
arbitrary however in this work only Hardy’s Multiquadrics (MQs) 

 with  standing for basis function free 

shape parameter are used. For non refined node distributions even smallest five 
nodded subdomain collocation works fine but with introduction of more complex 
refined nodes distributions small subdomain computations do not behave 
convergent anymore. To circumvent the problem, larger subdomains are selected 
with more stable weighted least squares approximation to determine coefficients 

. The subdomains are weighted by truncated Gauss weight function 

  (13) 

where  stand for weight function truncation parameter, weight 

function shape parameter and central subdomain node position vector, 
respectively. The subdomain size is thus determined by the weight function 
truncation radius, where all nodes within this radius are used as subdomain 
nodes. With the constructed approximation function an arbitrary spatial 
differential operator ( ) can be computed  

 . (14) 

     In the boundary nodes collocation instead of WLS is used in order to satisfy 
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used in Neumann boundary nodes. In such nodes boundary node collocation 
equation is replaced by the boundary condition equation  

 . (15) 

The spatial discretization problem is formulated in a vector form     

 . (16) 

with matrix dimension  where  stands for number 

of subdomain nodes. To maintain the general formulation both, the WLS and the 
collocation are considered through equation (16) where pseudo inverse of the 
non square WLS matrix  is computed by singular value decomposition and 
square collocation matrix is inverted by LU decomposition.  
     With defined time and spatial discretization schemes the general transport 
equation under the model assumptions can be written as  

  (17) 

 at current and next time step,  for general diffusion coefficient and  for 

source term. To couple the mass and momentum conservation a special treatment 
is required. The intermediate velocity is computed by 

 . (18) 

     The equation (18) did not take in account the mass continuity and therefore 
pressure and velocity corrections are added  

     (19) 

where  stand for pressure velocity iteration index, velocity 

correction and pressure correction, respectively. Combining the momentum and 
mass continuity equations the pressure correction Poisson equation emerges  
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where  stands for the field value in the interior node with index 



     Instead of solving the global Poisson equation problem the pressure 
correction is directly related to the intermediate velocity divergence  

  (21) 

     The proposed assumption enables direct solving of the pressure velocity 
coupling iteration and thus is very fast due to only one step needed in each node 
to evaluate the new iteration pressure and the velocity correction. With computed 
pressure correction the pressure and the velocity can be corrected as  

          (22) 

here  stands for relaxation parameter. The iteration is performed until the 

criteria  is met in all computational nodes.  

     Each simulation starts with the uniformly distributed initial nodes. At every 

predefined number of time steps  all nodes are checked if 

refinement/derefinement is needed. If the refinement criterion is met, additional 
nodes are added or removed from the vicinity of the node. At each refinement 
maximum four nodes are symmetrically added around the refined node. 
Maximum allowed difference in the refinements between neighbouring nodes is 
set to one in order to keep the numerical approach as stable as possible. 
Important part of CPU complexity of the meshfree methods represents the 
selection of proper subdomain. The problem becomes even more important when 
working with dynamic node distribution. Truly meshfree methods should not use 
any topological information about the nodes connectivity, however in order to 
utilize fast subdomain selection the information about the local node 
neighbourhood (four symmetric neighbours) is stored within the node. The 
example of once and four times refined node is presented in Figure 2 where the 
arrows point to each node neighbourhood.  

4 Results 

The melting of a metal like material is considered as a benchmark test. A 
detailed comparison of other cases proposed in the call [3] can be found in [1]. 
The present paper is focused on the application of a dynamic node distribution in 
such cases. The comparison of the melting front position after  to the 
previously published data is shown in Figure 4.  
     The solid part of the domain is kept at initial node distribution density while 
the liquid part is 

 
times refined. As the melting front advances with the 

time, nodes are added to the area with governed liquid phase. Solution at  
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Figure 2: An example of one refined node (left) and four time refined node 
(right).  

 

 

 

Figure 3: Solution at different times.  
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Figure 4: Melting front comparison at  and domain average liquid 
fraction (left). Relative number of computational nodes with 
respect to the fully refined liquid phase (right).    

different time is represented in Figure 3 where streamlines are plotted as dotted 
lines and temperature contours as solid lines. In Figure 3 the nodes distribution is 
plotted as well. At the beginning most of the domain is covered only with initial 
nodes due to its solid state. The advancing melting front leaves liquid phase 
behind it. The liquid phase is refined in order to handle much more complex 
fluid flow computations and the phase change phenomena. The number of 
computational nodes is therefore directly related to the domain average liquid 
fraction. In Figure 4 the comparison of average liquid fraction with relative 
number of domain nodes  

  (23)  

where  stand for the number of the nodes and relative number of 

nodes is represented. The comparison gives the expected results. The case has 
been computed with , , , ,  

, , , ,  and  . 

5 Conclusions 

In this paper an application of the dynamic node distribution strategy in the 
thermo-fluid problems with phase change has been explored. The local meshfree 
method based on the weighted least squares approximation has been used for 
spatial discretization with two level Euler explicit time stepping for time 
discretization. To optimize the numerical effectiveness the computational nodes 
are added to domain based on the phase indicator. The liquid phase is covered 
with much denser nodes distribution in comparison with the solid phase of the 
domain thus the most complex computations are in the liquid part of the domain 
and its boundary. Nodes are constantly refined as the melting front is advancing 
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from the hot side to the cold side of the domain assuring the appropriate node 
coverage of the liquid part. The nodes refinement algorithm is local as well as 
subdomain selection. The proposed solution procedure is completely local and 
therefore numerically very effective. The parallelization of the numerical code is 
almost trivial.  
     Future work will be focused on more complex physical situations as well as 
more involved node refinement/derefinement criteria that would take into 
account also the flow structure. 
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