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Abstract 

Flow field analysis through porous boundaries is of great importance, both in 
engineering and bio-physical fields, such as transpiration cooling, soil 
mechanics, food preservation, blood flow and artificial dialysis. A new family of 
exact solution of the Navier–Stokes equations for unsteady laminar flow inside 
rotating systems of porous walls is presented in this study. The analytical 
solution of the Navier–Stokes equations is based on the use of the Bessel 
functions of the first kind. To resolve these equations analytically, it is assumed 
that the effect of the body force by mass transfer phenomena is the ‘porosity’ of 
the porous boundary in which the fluid moves.  
     In the present study the effect of porous boundaries on unsteady viscous flow 
is examined for two different cases. The first one examines the flow between two 
rotated porous cylinders and the second one discusses the swirl flow in a rotated 
porous pipe. The results obtained reveal the predominant features of the unsteady 
flows examined. The developed solutions are of general application and can be 
applied to any swirling flow in porous axisymmetric rotating geometries. 
Keywords: exact solution, Navier–Stokes, porous, viscous flow, unsteady flow, 
laminar flow, swirl flow, Bessel functions. 
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1 Introduction 

In the previous years, problems of fluid flow through porous ducts have aroused 
the interest of Engineers and Mathematicians; the problems have been studied 
for their possible applications in cases of transpiration cooling, gaseous diffusion 
and drinking water treatment, as well as biomedical engineering. The cases 
where an exact solution for the Navier–Stokes equations can be obtained are of 
particular importance in order to describe the fluid motion of viscous flows. 
However, since the Navier–Stokes equations are non-linear, there cannot be a 
general method to solve analytically the full equations. Exact solutions on the 
other hand are very important for many reasons. They provide a reference 
solution to verify the accuracies of many approximate methods, such as 
numerical and/or empirical. Although, nowadays, computer techniques make the 
complete integration of the Navier–Stokes equations feasible, the accuracy of 
numerical results can be established only by comparison with an exact solution 
[1]. The Navier–Stokes equations were extensively studied in the literature. 
Exact solutions already known are one-dimensional or parallel shear flows, 
rectilinear motion flows, or duct flows [1–3]. The flow of fluids over boundaries 
of porous materials has many applications in practice, such as boundary layer 
control and transpiration processes. Exact solutions are generally easy to find 
when suction or injection is applied to a fluid flow. In the case of flows through 
porous media, a simple solution of the Navier–Stokes equations can be obtained 
for the flow over a porous plane boundary at which there is a uniform suction 
velocity [4]. Moreover, fully developed laminar flow through porous channel 
with a porous pipe for low Reynolds numbers was investigated in [5] and the 
flow in a duct of rectangular cross-section in [6]. This problem was extended in 
[7] to high Reynolds numbers. The exact solution of the Navier–Stokes 
equations for the case of steady laminar flow between two porous coaxial 
cylinders with different permeability was obtained using the perturbation 
technique [8]. The cylinders were assumed to rotate with different angular 
velocities and the fluid between them was flowing with a constant axial pressure 
gradient. A mathematical model for particle motion in viscous flow between two 
rotating porous cylinders was also presented [9]. In that paper, a steady flow of a 
mixture of fluid and particles was assumed. The mass fraction of particles in the 
flow was small, so the perturbations of the mean liquid flow due to the presence 
of particles were negligible. An analytical approximate solution for decaying 
laminar swirling flows within a narrow annulus between two concentric 
cylinders was also obtained. It was found that the swirl velocity exhibits a 
Hagen-Poiseuille flow profile decaying downstream [10]. An exact solution of 
the Navier–Stokes equation was obtained in [11] for the laminar incompressible 
flow in a uniformly porous pipe with suction and injection. In this study the 
velocity field was expressed in a series form in terms of the modified Bessel 
function of the first kind of order n. For large values of the non-dimensional 
time, the unsteady flow solution approaches its asymptotic value of the steady 
state problem. Laminar flow over pipes with injection and suction through the 
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porous wall was studied by means of analytic solutions for the case of low 
Reynolds numbers [12]. 
     In the present study the full unsteady three-dimensional Navier–Stokes 
equations are considered for the case of incompressible porous flow. An exact 
solution is obtained by employing the Bessel functions for the case of three-
dimensional unsteady flow between rotated porous cylinders and for the case of 
unsteady swirl flow in rotated porous pipes. 

2 Mathematical and physical modelling 

Assuming for the first case study the flow of a Newtonian fluid through an 
annulus formed between two rotating cylinders, figure 1a, and, for the second 
case study the flow within a rotating cylindrical pipe, figure 1b, the basic 
equations are the mass conservation equation and the equations of motion 

(Navier–Stokes), in a cylindrical system of coordinates  zr ,,  where the 

z axis lies along the centre of the pipe, r  is the radial distance and   is the 
peripheral angle.  
 

 

Figure 1: (a) Flow between two rotating porous cylinders; (b) flow within a 
rotating porous pipe. 

2.1 Governing equations 

Considering that the flow modelling describes the motion of a homogeneous 
Newtonian fluid the incompressible Navier–Stokes equations are the governing 
equations, while the following simplified assumptions are made:  
a) the rotating cylinders or the rotating pipe are considered of finite length 
b) the permeable wall boundary is treated as a `fluid medium'. 
c) the gravitational forces due to the fluid weight are negligible. 
The continuity equation is: 

 
1

0r r z uu u u

r r z r



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The system of the Navier–Stokes equations can be written: 
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3 Solution methodology 

3.1 Unsteady flow between two coaxial porous rotating cylinders 

An incompressible fluid of dynamic viscosity μ and density ρ is considered 
between two rotating cylinders of length L. The inner cylinder can rotate with 

peripheral velocity iR   and the outer can rotate with peripheral velocity 

oR  . At time level 0t t  the fluid enters the cylinders gap uniformly at 
* 0z   and exits at *z L or at non-dimensional axial distance 1z  . 

     The following boundary conditions are satisfied:  
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     For the test case selected, the value of the axial velocity was set equal to zero 
at the outer radius. Resolving the system of equations (1) to (4), it was found that 

the axial velocity zu , the radial velocity ru  and the tangential velocity u , can 

be expressed in terms of the functions: 
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where , ,A C D  are integration constants and  rbJ0  and   rbJ1  are the 

Bessel functions of the First kind given in detail in [13]. 

     The constant D is defined as 1 2D    , so it covers the case of counter-

rotating cylinders or cylinders rotated in the counter-clockwise direction. 
     The static pressure field is then calculated analytically as: 

 2 2 2 2 1
0 1 0

1
( , , , )

2
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where the Reynolds number is defined as: Re
U L

 

  

     The proposed solution was validated for the case of the laminar fully 
developed swirling flow in the annulus between two coaxial cylinders. For this 
case, one can find in the literature numerical solutions as well as analytical ones 
[10]. Figure 2 presents the comparison between the axial velocity obtained by the 
present analytical method (solid line) and the analytical solution obtained in [10] 
(dashed line). The comparison is considered satisfactory to validate the present 
method, since the maximum difference between these results does not exceed 
5%. 
     The solution of the Navier–Stokes equations defined by equations (5) and (6) 
does satisfy the continuity equation (1) and momentum equations (2) to (4). 
     Figure 3 shows the radial velocity distribution for three different time levels, 
namely for 0,1, 2t   along the radius. It was assumed that the inner non-

dimensional (by the cylinders length L) radius is 0.1iR  , while the outer  

 

 

Figure 2: Distribution of the axial velocity for the case of swirling flow 
between two cylinders. (solid line: present results, dashed line: 
results from [10]). 
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Figure 3: Distribution of the radial velocity in terms of radius for different 
time levels. 

 

Figure 4: Distribution of the tangential velocity in terms of radius for 
different time levels. 

non-dimensional radius is 0.8oR   for specific values of the constants 

, , ,A C D k . A decaying behaviour is observed along the radial gap.  

     The tangential velocity distribution shows in figure 4 a reduction from the 
inner to the outer cylinder for 0,1, 2t  . As the time level increases more fluid 

is moving tangentially, thus tangential velocity values increase. 
     The axial velocity has a decaying distribution from the inner to the outer 
radius, figure 5.  
     Figure 6 shows the radial velocity distribution for a given time level for 
different non-dimensional axial positions, namely for 0, 0.3, 0.8z  .  
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Figure 5: Distribution of the axial velocity in terms of radius for different 
time levels. 

 

Figure 6: Distribution of the radial velocity in terms of radius for different 
axial positions. 

 
     The radial velocity decreases from the inlet to the outlet. The distribution of 
the tangential velocity found to satisfy the system of equations of motion is not a 
function of the axial distance, z according to equation (5c). So at any axial 
position, the tangential position has a constant radial distribution at given time 
levels.  
     Figure 7 presents the axial velocity distribution for a given time level for 
different axial positions 0, 0.3, 0.8z  . The axial velocity shows an increase 

along the gap of the cylinders from the inlet to the outlet. 
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Figure 7: Distribution of the axial velocity in terms of radius for different 
axial positions. 

3.2 Unsteady swirling flow in a rotated porous pipe 

An incompressible fluid of dynamic viscosity μ and density ρ is considered 
within a rotating pipe of length L. The inner pipe can rotate along its axis with 

peripheral velocity R  . At time level 0t t  the fluid enters the pipe 

uniformly at * 0z   and exits at *z L or at non-dimensional axial distance 
1z  . 

     The following boundary conditions are satisfied:  
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     For the test case selected, the value of the axial velocity is zero at the outer 
radius. 

     The axial velocity zu , the radial velocity ru  and the tangential velocity u , 

can expressed in terms of the functions: 
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where  rbJ0  and   rbJ1  are the Bessel functions of the First kind and 

, ,A B C  are integration constants. 
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     The static pressure field is then calculated analytically as: 

 2 2 2 2 1
0 1 0

1
( , , , )

2
bz kt bz kt bz ktBJk

p r z t J e e J J e e e e
b r

         

 2
1 0 0

2
2bz kt bz kt bz ktA

J r e e AJ e e AJ r e e ABz Az
b

       (8) 

     The solution of the Navier–Stokes equations defined by equations (7) and (8) 
does satisfy the continuity equation (1) and momentum equations (2) to (4). 
     Figure 8 shows the radial velocity distribution for three different time levels, 
namely for 0,1, 2t   along the radius. A decaying behaviour is observed in 

this figure. The tangential velocity distribution found in equation (11c) is 
independent of the time variable t.  
     The axial velocity has a decaying distribution towards the outer radius, figure 9.  
 

 
Figure 8: Distribution of the radial velocity in terms of radius for different 

time levels. 

 
Figure 9: Distribution of the axial velocity in terms of radius for different 

time levels. 
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Figure 10: Distribution of the radial velocity in terms of radius for different 
axial positions. 

 

Figure 11: Distribution of the axial velocity in terms of radius for different 
axial positions. 

     Figure 10 shows the radial velocity distribution for a given time level for 
different non-dimensional axial positions, namely for 0, 0.3, 0.8z  . 

     The distribution of the tangential velocity found to satisfy the system of 
equations of motion is not a function of the axial distance, z. So at any axial 
position, the tangential position has a constant radial distribution at given time 
levels.  
     Figure 11 presents the axial velocity distribution for a given time level for 
different axial positions 0, 0.3, 0.8z  . The axial velocity shows an increase 

along the gap of the cylinders from the inlet to the outlet. 
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4 Conclusions 

In this article, an original work presenting exact solutions of the Navier–Stokes 
equations in the presence of porous boundaries of axisymmetric rotating 
geometries is proposed. Such flows have significant industrial applications 
including filtration and particle separation.  
     Two cases were examined. The first one is the unsteady flow between two 
rotating porous cylinders and the second one is the unsteady flow inside rotating 
porous pipes. In both cases, the Bessel functions of the first kind were used to 
compute the axial and radial components of the flow velocities, while the 
tangential flow velocity was found to depend only on the radius. For both cases, 
the velocity and pressure fields were found by means of analytical methods to 
satisfy the Navier–Stokes equations for laminar, incompressible unsteady flows.  
     For the case of the unsteady flow inside two rotating cylinders, it was found 
that the maximum of the axial velocity shifts towards the inner cylinder. The 
axial and radial velocity components are independent of the rates of rotation of 
cylinders. The tangential flow velocity having the form of “free vortex” type of 
flow was found to satisfy the equations of motion. 
     For the case of the swirl flow inside rotating pipes, it was found that the 
maximum of the axial velocity is at the centre of the pipe and decays towards the 
porous boundary at the maximum radius. Variations were observed also for the 
radial velocity component which also has a maximum close to the centre of the 
pipe. The linear variation of the tangential velocity having the form of “forced 
vortex” type of flow along the radius was found to satisfy the equations of 
motion. 
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