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Abstract

In the present article we were testing our flow solver for turbulent channel
flow. Velocity-vorticity formulation of Navier-Stokes equations is applied, thus
governing equations are given for the kinematic and kinetic aspects of flow instead
of mass and momentum equations. The solution algorithm first solves the kine-
matics equation for unknown boundary vorticity values using the single domain
boundary element numerical method. The next step of the solution algorithm is
calculation of the domain velocity field, which is also achieved by solving the
kinematics equation. In this and later cases we use the sub-domain boundary
element method. After the velocity field is known, we calculate the turbulent
kinetic energy and turbulent dissipation fields to obtain the turbulent viscosity.
Finally, the vorticity field redistribution is calculated via the kinetics equation.
For laminar solutions it was shown that the use of the boundary domain integral
method accuracy of solutions for benchmark test cases is very high on coarse
meshes. However, since this method is still limited, with high CPU and memory
requirements, parallelization of the algorithm is a must for calculating turbulent
flows. This was achieved with the use of a MPI (message passing interface)
standard.

1 Introduction

In this paper we present the application of the boundary element method for
solving planar turbulent flow problems with low-Reynolds-number turbulence
models. Since viscosity now includes an additional, modeled part, governing
equations have to be written in extended forms, which have to include this
nonlinear behavior. The compressibility effect was neglected for simplifying an
already highly nonlinear set of equations. For the same reason a zero gravity
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environment was applied. Governing equations are written in velocity-vorticity
form, which eliminates pressure from equations that describe incompressible fluid
flow. Instead of momentum conservation equations, velocity-vorticity formulation
gives the equation for vorticity transport. The mass conservation equation is trans-
formed into a kinematics equation with the help of vorticity definition. Kinematics
equations represent compatibility and restriction conditions between velocity and
vorticity field functions. These equations are derived from the mass conservation
law with the help of vorticity definition. Kinetics equations are obtained by
applying a curl differential operator to the momentum transport equation. For
application of the turbulence model, the stress tensor has to be rewritten in such a
way that we obtain appropriate form for the application of boundary elements. The
Laplace fundamental solution was used for kinematics equations integral forms,
which are then discretized by the single-domain boundary element method. As
this method is very memory consuming, we applied the wavelet transform [1] of
domain matrices in order to reduce its size. The resulting system of equations
is then solved by direct solver using LU decomposition. The parabolic-diffusion
fundamental solution was used in the integral form of kinetics equations, which
are then discretized by the sub-domain boundary element method. This type of
discretization yields an overdetermined system of equations, which is solved by a
LSQR [2] type solver. Obtaining a solution is very challenging due to the strong
nonlinearity of the vorticity equation.

2 Governing equations

Governing equations describing viscid fluid flow are conservation equations,
e.g. mass, momentum and heat energy conservation equations. For isothermal
flows, energy conservation equation may be omitted thus leaving us with only
mass and momentum conservation equations. Equations are further simplified for
incompressible flows. We can write those in Einstein notation as:

∂vj

∂xj
= 0 (1)

and

ρ0
Dvi

Dt
= − ∂p

∂xi
+

∂

∂xj

(
ν
∂vi

∂xj

)
+ ρ0gi, (2)

where i is 1 or 2 for their planar forms, vi or vj are velocity vector components,
xj are spatial coordinates, gi are gravity acceleration vector components, t is time,
p is pressure and ρ0 is density.

In equation (2), Dvi

Dt marks the material or Stokes derivative, which we can write

in extended form as Dvi

Dt = ∂(·)
∂t + vj

∂vi

xj
.

With some mathematical knowledge we can transform these equations to their
velocity-vorticity form. By use of vorticity definition, the mass conservation
equation can be transformed [3] to the following form:
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∂2vi

∂xj∂xj
+ eij

∂ω

∂xj
= 0. (3)

In equation (3) ω represents vorticity and eij is unit permutation tensor. Since
equation (3) does not have a unique solution we have to apply compatibility and
restriction conditions for velocity and vorticity fields, thus obtaining the following
equation for the kinematics of planar flows.

∂vi

∂n
+ eijωnj = −eij

∂vj

∂t
, (4)

where nj are unit normal vector components. Momentum transport equations
transform into the vorticity transport equation by applying the curl operator to
equations (2)

∂ω

∂t
+
vjω

∂xj
= ν0

(
∂2ω

∂xj∂xj

)
− 1
ρ0
eij
∂fm

i

∂xj
(5)

where fm
i is the source term due to nonlinear viscosity and is equal to

fm
i = −eij

∂η̃ω

∂xj
+ 2eij

∂η̃

∂xj
ω + 2

∂η

∂xj

∂vi

∂xj
, (6)

where nonlinear dynamic viscosity is decomposed into η = η0 + η̃.
Equation (5) is a scalar vorticity transport equation, since for planar flow,

vorticity has only one component different from 0.
For turbulence model Spalart-Allmaras [4] one equation low-Reynolds turbu-

lence model was used, where the trip term was omitted.

Dν̃

Dt
= Cb1 [1 − ft2] S̃ν̃ +

1
σ

[
∂

∂xj

(
(ν0 + ν̃)

∂ν̃

∂xj

)
+ Cb2

(
∂ν̃

∂xj

)2
]

(7)

−
[
Cw1fw − Cb1

κ2
ft2

](
ν̃

dn

)2

,

where dn is normal distance from the wall and ν̃ is a viscosity-like variable.
Turbulent eddy viscosity is computed from:

νt = ν̃fv1, (8)

where

fv1 =
χ3

χ3 + C3
v1

(9)

and
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χ =
ν̃

ν0
. (10)

The rest of the functions are defined as:

ft2 = Ct3e
−Ct4χ2

, (11)

fw = g

[
1 + C6

w3

g6 + C6
w3

] 1
6

, (12)

g = r + Cw2

(
r6 − r

)
, (13)

r =
ν̃

S̃κ2d2
n

, (14)

S̃ = S +
ν̃

κ2d2
n

fv2, (15)

fv2 = 1 − χ

1 + χfv1
(16)

and

S =
√

2ΩijΩij , (17)

where Ωij is a rotation tensor.
The values of the constants are as shown in table (1).

Table 1: Constants of the Spalart-Allmaras turbulent model.

σ Cb1 Cb2 Cw1 Cw2 Cw3 Cv1 Ct3 Ct4 κ
2
3 0.1355 0.622 Cb1

κ2 + (1+Cb2)
σ 0.3 2 7.1 1.2 0.5 0.41

3 Integral equations

Using ξ as the collocation point, the integral equations of kinematics [5] take the
form

c(ξ)�n(ξ) × �v(ξ) + �n(ξ) ×
∫

Γ

�v �q∗dΓ =
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�n(ξ) ×
∫

Γ

(
�q∗ × �n

)× �vdΓ + �n(ξ) ×
∫

Ω

�ω × �q∗dΩ, (18)

c(ξ)�n(ξ) · �v(ξ) + �n(ξ) ·
∫

Γ

�v �q∗dΓ =

�n(ξ) ·
∫

Γ

(
�q∗ × �n

)× �vdΓ + �n(ξ) ×
∫

Ω

�ω × �q∗dΩ. (19)

Ω and Γ denote domain and its boundary, c is the geometric parameter depending
on the location of source point and q∗ is the normal derivative of the fundamental
solution.

Equations (18) and (19) are the tangential and normal forms of the kinematics
integral equation, which we use for determining unknown boundary vorticity or
tangential velocity component boundary values and unknown normal velocity
component boundary values, respectively.

The integral equation of vorticity kinetics [3] is

c(ξ)ω(ξ) +
∫

Γ

ωQ∗dΓ =
1
η0

∫
Γ

(
η0
∂ω

∂n
− ρ0vnω + fm

t

)
U∗dΓ

+
1
η0

∫
Ω

(ρ0vjω + eijf
m
i )Q∗

jdΩ +
∫

Ω

ωF−1u
∗
F−1dΩ. (20)

For weighting function of equations (18) and (19), the elliptic Laplace funda-
mental solution was used. Its planar form is:

u∗ = − 1
2π
ln(r), (21)

where r is the distance between the source and the reference point. The normal
derivative is written as q∗ = ∂u∗

∂n .
For equation (20) the parabolic diffusive fundamental solution was used, which

is for planar flow in the form of:

u∗ =
1

4πατ

d
2

e
−r2

4ατ , (22)

where α is the relaxation parameter, d is the dimension of the problem and τ =
tF −t. Assuming constant variation of all field functions within the individual time
frame Δt, the time integrals may be evaluated analytically;

U∗ = α

∫ tF

tF−1

u∗dt (23)

and
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Q∗ = α

∫ tF

tF−1

q∗dt (24)

The basic equation of the Spalart-Allmaras turbulent model (7) was partitioned

to diffusive (ν0 ∂2ν̃
∂x2

j

), accumulation (∂ν̃
∂t ) and source term (b) in order to obtain the

corresponding integral equation;

c(ξ)ν̃(ξ, tF ) +
∫

Γ

ν̃Q∗dΓ =
∫

Γ

∂ν̃

∂n
U∗dΓ

+
1
α
bU∗dΩ +

∫
Ω

ν̃F−1u
∗
F−1dΩ (25)

3.1 Numerical algorithm

First, the laminar solution was obtained at some low Reynolds number [6].
Then calculation was restarted using the laminar results as initial conditions.
The numerical algorithm calculates kinematics matrices first before entering the
nonlinear loop. For laminar flows in the beginning of the nonlinear loop, the
kinematics of flow is solved. The next step is obtaining a solution for vorticity
transport, after that the loop begins anew. For turbulent flows, the algorithm first
calculates turbulent viscosity by solving the turbulence model equation(s). After
that, the nonlinear loop is the same as for laminar flows with the addition of
calculating turbulent viscosity after the vorticity transport equation.

Kinematics is solved by a single-domain BEM. Kinetics is solved by a sub-
domain BEM that uses quadrilateral elements for discretization of the domain.

4 Validation of the vorticity transport equation

The nonlinear vorticity transport equation was validated by calculating flows with
various viscosity distributions as shown in table 2. Uniform meshes of different
densities were used to test possibilities of capturing the nonlinearity of equations.

Table 2: Nonlinear dependence of viscosity for different test cases and values
of the vx component of velocity at channel half width; mesh a) 60x6
elements, mesh b) 70x20 elements, mesh c) 80x40 elements.

ν 1 + y 1 + 100 · y y3 y5 2 − y

Mesh a) 0.08515 0.00406 0.03729 0.01541 0.08515

Mesh b) 0.08499 0.00362 0.03700 0.01511 0.08499

Mesh c) 0.08500 0.00356 0.03713 0.01504 0.08500

Analytical 0.08496 0.00352 0.03704 0.01509 0.08496
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Figure 1: Boundary conditions for test cases.

The geometry for test cases was simple channel with a prescribed velocity profile
at the inflow and zero flux boundary conditions at the outflow as shown in

The generalized equation in form ∂
∂y

(
ν ∂vx

∂y

)
= −cwas solved for different vis-

cosity distributions and thus its behavior tested for nonlinear viscosity problems.
First, viscosity was set to be the function of 1 + k · y. If 0 ≤ y ≤< 1, the general
solution of this equation has the form:

vx(y) =
c

k

[
−y +

ln(1 + ky)
ln(1 + k)

]
(26)

Figures 2 and 3 show the results for two different values of k; 1 and 100. For low
values of k governing equations are only weakly nonlinear, thus even coarse mesh
describes the velocity profile quite well. At higher k values coarser meshes are
simply not good enough, hence the need for much finer meshes. Since gradients for
the first two cases of viscosity distributions are constant, we prescribed viscosity
distribution dependant on y3 and y5. If 1 ≤ y ≤ 2 analytical solutions have forms
of

vx(y) = c

[
1
y
− 2

3y2
− 1

3

]
, (27)

vx(y) = c

[
1

3y3
+

14
45

(
− 1
y4

+ 1
)
− 1

3

]
. (28)

A comparison of the analytical and numerical results is shown in Figure 4 for
y3 dependance and in Figure 5 for y5 dependance of viscosity.

To test negative gradients, the viscosity was set to be function ν = 2 − y. The
analytical solution for the velocity profile is
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Figure 2: Velocity x component profiles for ν = 1 + y viscosity distribution;
full circles represent numerical values, the full line represents analytical
values; mesh a) top left, mesh b) top right and mesh c) bottom.
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Figure 3: Velocity x component profiles for ν = 1 + 100 · y viscosity distribution.

vx(y) = c

[
1 − y

(
ln(2 − y)
ln2

)]
(29)

while y boundaries are the same as in cases of ν = 1 + k · y. The results for this
test case are shown in gure 6
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Figure 4: Velocity x component profiles for ν = y3 viscosity distribution.
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Figure 5: Velocity x component profiles for ν = y5 viscosity distribution.

5 Conclusion

The tested numerical algorithm was shown to be able to successfully cope with
strong nonlinearities in the vorticity transport equation and it is able to predict the
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Figure 6: Velocity x component profiles for ν = 2 − y viscosity distribution.

corresponding velocity field accurately. In all test cases, except in the case with
the strongest nonlinear viscosity distribution, even the coarsest mesh proved to be
adequate. In the future, the developed numerical algorithm will be used to simulate
turbulent fluid flow. DNS results of turbulent channel flow [7] will be used as a
benchmark example to validate the algorithm. Furthermore, the algorithm will be
tested on a backward-facing step example and compared with the DNS results of
[8].
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