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Abstract 

A boundary element method numerical scheme for simulation of compressible 
(density depended) fluid flow in porous media is presented. The fluid flow is 
modelled applying the Brinkman extended Darcy momentum equation, which is 
commonly used when it is important to satisfy the no-slip boundary condition on 
impermeable surfaces that bound the porous media domain. The model is applied 
to consider buoyancy driven flow in a closed porous cavity, differentially heated 
under large temperature gradients. The density is to be regarded as a dependent 
thermodynamic variable. The results in terms of velocity and temperature 
redistribution as well as the total heat transfer across the cavity are presented for 
different governing parameters. 
Keywords: porous media, compressible fluid flow, boundary domain integral 
method, boundary element method, natural convection. 

1 Introduction 

Most of the studies dealing with transport phenomena in porous media are based 
on presuming the fluid is incompressible and viscous, where the mass density is 
a constant quantity the velocity does not depend on the mass density and 
pressure is simply a force in the linear momentum balance equation. However in 
numerous natural and engineering systems, density-dependent flow processes 
play an important role. Besides various applications in the dynamics of pure 
viscous fluids we find such phenomena also in subsurface hydrology, 
geophysics, reservoir mechanics, which are all the problems concerning a 
presence of a permeable solid-porous media. In this work, the boundary element 
method, which has been established for the viscous incompressible fluid motion 
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in porous media [1], is modified and extended to capture the compressible fluid 
state with restriction to the subsonic flows. That means that the difference in 
mass density significantly changes the velocity field but there are no shock 
waves and no sudden sharp changes in the values of the field functions. 
Furthermore the pressure is a thermodynamic quantity which is temperature and 
mass density dependent. 

2 Mathematical formulation 

The fundamental processes of flow and transport in porous media are presented 
by the standard continuum approach. The physical properties such as velocity, 
pressure, temperature are continuously distributed in space and thus exist for any 
infinitely small material point. But in practical problems, of course, mass, motion 
and energy related quantities can’t be measured and solved at microscopic level 
due to the geometric complexity of the real porous domain. Therefore the 
transformation to the macroscopic level by averaging over representative 
elementary volume is required. This procedure leads to measurable and solvable 
quantities for which the continuum approach is then invoked. The basis of 
density dependent flow and transport model is stated by the fundamental 
physical principles of conservation of mass, momentum and energy [2]: 
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     The parameters, used in equations are: iv  volume-averaged velocity, ix  the 
i-th coordinate, φ  porosity, t time, ρ  density, µ  dynamic viscosity, jxp ∂∂  the 
pressure gradient, ig  gravity, K permeability of porous media, µ̂ coefficient of 
bulk viscosity, T is temperature, eλ  the effective thermal conductivity of the 
porous media given as sfe )( λφφλλ −+= 1 , where fλ  and sλ  are thermal 
conductivities for the fluid and solid phases, respectively. Furthermore fp )c( ρ  
and sp )c( ρ  represent heat capacity for the fluid and solid phases. Introducing 
new variables φρρ =′  and φjj vv =′ , and with the definition of Stokes 
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material derivative of the variable ( )⋅  as ( ) ( ) ( ) kk xvttDD ∂⋅∂+∂⋅∂=⋅ , 
continuity equation can be written as 
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where D′ represent a local expansion rate. According to Stokes hypothesis the 
second viscous coefficient can be taken as µµ 32ˆ −= . Because of analytical 
reasons to develop velocity-vorticity formulation of governing equations, the 
momentum eq. (2) is worth writing in its extended form [3], [4] 
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with the introduction of the vorticity vector ω , representing the curl of the 
velocity vector,  
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and having in mind that in our case the original vorticity is replaced by the so-
called compressible vorticity ω′ , ( )ωφω 1=′ . It is important to stress out that 
porosity φ  is taken to be constant over individual subdomain but changeable in 
respect to the whole computational domain. 
     Representing the material properties as a sum of a constant and variable part 
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then the momentum and energy equations (3) and (5) can be written as 
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where a  is thermal diffusivity, and the pseudo body force m
if  and pseudo heat 

source m
TS  terms including the effects of variable material properties, are given 

by 
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3 Numerical method  

The numerical method chosen for this investigation is the Boundary Domain 
Integral Method based on the classical Boundary Element Method.  
The kinematic is given by velocity vector Poisson’s equation 
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representing the mass conservation equation (1) and the vorticity definition (6), 
expressing the compatibility and restriction conditions between velocity, 
vorticity, and mass density field functions.  
     The vorticity kinetics is given by the vorticity transport equation obtained as a 
curl of the momentum equation (8) in the form 
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     The vorticity transport equation (13) is a highly nonlinear partial differential 
equation due to the products of velocity and vorticity having in mind that the 
velocity is kinematically dependent on vorticity. Due to the buoyancy force and 
variable material property terms, acting as additional temperature and pressure 
dependent vorticity source terms, the vorticity transport equation is coupled to 
the energy and pressure equations, making the numerical procedure very severe.  
     In the compressible fluid dynamics the pressure is a thermodynamic quantity 
which is temperature and mass density dependent. Writing the momentum 
equation (8) for the pressure gradient we have  
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     To derive the pressure equation, depending on known field and material 
functions, the divergence of equation (14) should be calculated, resulting in the 
elliptic Poisson pressure equation 
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     Equations (9), (12), (13) and (15) represent the leading non-linear set of 
coupled equations to which the weighted residual technique of the BDIM has to 
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be applied in establishing integral representations corresponding to original 
differential conservation equations. Each of those equations can be written 
following the general differential conservation equation where the linear 
differential operator can be either elliptic or parabolic. The velocity potential 
equation and a pressure equation are recognised as a nonhomogeneous elliptic 
vector Poisson equations, while the formulations of the integral representation 
for the vorticity kinetics and heat energy kinetics are based on a elliptic 
diffusion-convection character of the leading partial differential equations. For 
the numerical approximate solution of the field functions, namely the velocity, 
vorticity, pressure and temperature, the integral equations are written in a 
discretized manner in which the integrals over the boundary Γ  and domain Ω  
are approximated by a sum of the integrals over all boundary elements and over 
all internal cells. In such a way we obtain the matrix form of the equations, 
which are solved by coupling kinetic and kinematic equations, considering the 
corresponding boundary and initial conditions. The integral formulation has been 
presented in detail previously by Jecl et al. [5], therefore only the resulting 
matrix form of the equations for kinematics, vorticity kinetics, heat energy 
kinetics and pressure are presented here. As the computational results of the 
present work are limited to the two-dimensional case, all the subsequent matrix 
equations are consequently written for the case of planar geometry only.  
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where kinematic viscosity 0ν  is defined as 000 ρµν = . In equations (16), (17), 
(18) and (19) the matrices [ ] [ ] [ ]jD,G,H and [ ]B  are the influence matrices and 
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they are composed of integrals taken over the individual boundary elements and 
over the internal cells. In order to improve the economics of the computation, 
and thus widen the applicability of the proposed numerical algorithm, the 
subdomain technique is used, where the entire solution domain is partitioned into 
subdomains to which the same described numerical procedure can be applied. 
The final system of equations for the entire domain is then obtained by adding 
the sets of equations for each subdomain considering the compatibility and 
equilibrium conditions between their interfaces, resulting in a much sparse 
system matrix suitable to solve with iterative techniques. In our case each 
quadrilateral internal cell represents one subdomain bounded by four boundary 
elements. The geometrical singularities are overcome by using 3-node 
discontinuous quadratic boundary elements combined with 9-node corner 
continuous internal cells. 

4 Test example 

The extended numerical algorithm was tested on the problem of natural 
convection in a porous cavity heated from the side with the vertical walls held at 
different temperatures and the connecting horizontal walls considered adiabatic. 
The enclosure is filled with porous material, which is homogeneous and 
isotropic. The saturating density dependent fluid and the solid matrix are both in 
local thermodynamic equilibrium. The flow is assumed to be steady, laminar, 
and compressible. Detailed presentation of the geometry and boundary 
conditions are given in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Geometry and boundary conditions for the cavity. 

     The governing parameters for the presented example are given in Table 1. An 
orthogonal 10 × 10 stretched grid in both dimensions was used for computations, 
where the grid aspect ratio was 6. The computations were performed for Ra = 
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1000, where the cold wall is imposed to temperature Tc = 240 K and the hot wall 
to temperature Th = 960 K. In the first case the value of porosity is φ = 1, and in 
the second case φ = 0.1, the values of permeability are K = 10-6, 10-7, 10-8 m2. 

Table 1:  Parameters and boundary conditions for solved problem. 

Dimension of the cavity L × H = 0.01m ×0.01m 
Porosity φ = 1, 0.1 
Permeability K = 10-6, 10-7, 10-8 m2 
Reference temperature T0 = 600 K 
Reference pressure p0=101325 Pa 
Reference density ρ0 = 0.5884 kg/m3 
Dynamic viscosity η0(T0) = 0.295⋅10-4 Pa⋅s 
Specific heat (fluid phase) cf = 1004.5 J/kg K 
Specific heat (solid phase) cs = 800 J/kg K 
Temperature of cold wall Tc = 240 K 
Temperature of hot wall Th = 960 K 
Rayleigh number Ra = 103

 
     Figures 2 and 3 show temperature and velocity fields respectively. The most 
evident difference in comparison to incompressible fluid flow is the asymmetry 
of both fields. The influence of permeability can be observed mainly in the 
 
 

   

  

Figure 2: Temperature contours for Ra=103 and different values of porosity 
and permeability. Upper row φ=1, bottom row φ=0.1, left K=10-6 
m2, middle K=10-7 m2, right K=10-8 m2. 

 © 2008 WIT PressWIT Transactions on Engineering Sciences, Vol 59,
 www.witpress.com, ISSN 1743-3533 (on-line) 

Advances in Fluid Mechanics VII  379



  

  

Figure 3: Velocity vectors for Ra=103 and different values of porosity and 
permeability. Upper row φ=1, bottom row φ=0.1, left K=10-6 m2, 
middle K=10-7 m2, right K=10-8 m2. 

Table 2:  Values of Nusselt number at different values of parameters φ and 
K. 

Nu K = 10-8 K = 10-7 K = 10-6 
φ = 0.1 1.817 1.487 1.299 
φ = 1 1.472 1.292 1.284 

 
temperature field presentation. With the decrease of value K the heat transfer 
through cavity also decreases. 
     In Table 2 the results of overall Nusselt number Nu for different values of 
porosity and permeability are listed. The overall heat transfer is higher for the 
case of porosity φ = 0.1 and for lower values of permeability, which is also 
evident from the temperature contours in Figure 2.  

5 Conclusion 

The boundary element integral approach for the numerical solution of 
compressible fluid motion in thermally driven porous cavity is presented. The 
derived numerical model is characterized by the decomposition of flow into its 
kinematics and kinetics, a result of the velocity-vorticity formulation of the 
modified (porous) Navier-Stokes equation for a compressible fluid. The 
described numerical algorithm leads to strong coupling between velocity, 
vorticity and mass density fields, resulting in a stable numerical scheme. The 
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proposed numerical procedure is studied for the case of natural convection in 
square porous cavity heated from the side. The characteristics of the flow and 
temperature fields in the cavity are analysed for different parameters. The results 
indicated that the BDIM as extended from BEM could be efficiently used for 
solving the convective heat transfer in porous media. 
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