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Abstract

Analytical solutions were constructed to investigate the ice floe drift, velocity field,
and trajectories. The mathematical model considers the balance of atmosphere and
ocean drag forces on ice floe, including skin and body drag forces from wind,
waves, and currents. We have obtained numerical solutions to our mathematical
models of air-ice stress. Graphical solutions are presented for ice floe drift due to
wind stress. Mathematical formulations are being developed for the ice floe drift
due to Eulerian current, water-ice form stress, and wave radiation pressure. We
systematically presented in this paper the classical solutions of the ice floe drift,
velocity, and trajectories considering the effects of wind. Numerical solutions of
the mathematical models developed here, have been computed and presented. The
mathematical models will be tested with available experimental data.
Keywords: ice floe, marginal ice zone, MIZ, ice drift, ocean surface waves, energy
balance equation, wave spectrum, ice floe velocity components, ice floe trajecto-
ries.

1 Introduction

An ice floe is a floating chunk of sea ice that is less than 10 kilometers in its
greatest dimension. Marginal Ice Zone (MIZ) is an interfacial region of ice floes
which forms at the boundary of open water and the continuous ice pack. Figure 1
depicts a typical MIZ situation including ice floes and wave induced ice fracture
at the ice edge. This paper considers the mathematical model for the ice edge and
ice floe trajectories which is based on a balance equation for forces due to wind,
waves, and currents impinging on the ice, as described by Tang and Fissel [7],
Steele et al. [6] and Jenkins [3].

 © 2008 WIT PressWIT Transactions on Engineering Sciences, Vol 59,
 www.witpress.com, ISSN 1743-3533 (on-line) 

Advances in Fluid Mechanics VII  321

doi:10.2495/AFM080311



Figure 1: Marginal ice zone in the Antarctic, and wave induced ice fracture at
the ice edge. (Courtesy: National Science Foundation, USA, and Squire
et al. [5]).

The dominating physical processes that determine ocean surface waves are,
input of energy due to wind Sin, nonlinear transfer between spectral components
due to wave-wave interactions Snl, and energy dissipation due to white capping
and wave breaking Sds. Operational wave models combine these processes in the
energy balance equation, which may be written as

∂E(f, θ)

∂t
+ Cg · ∇E(f, θ) = Sin + Sds + Snl (1)

where the two dimensional wave spectrum E(f, θ) is a function of frequency f ,
direction θ , time t , and position x and where Cg is the group velocity. Follow-
ing Hasselmann et al. [2] and Perrie and Hu [4], we parameterized Sin, Sds, and
Snl. Figure 2 shows a JONSWAP Wave Energy Spectrum with peak frequency of
0.3 Hz, at 10 m/s wind speed developed over 3.25 hours.

We systematically illustrate the mathematical formulations of the ice floe drift
velocity due to wind forcing effects. The ice floe trajectories and the ice floe veloc-
ity fields are illustrated in a clear cut way. Linearizing the governing equations with
zero initial conditions and using the Laplace transform method, we have obtained
solutions to simulate the real field conditions. Graphical solutions are displayed
in case of the external wind stress which causes the ice floe drift from one place
to another. These highly simplified results seem to agree quite well with real field
data. Further analysis and detailed investigations of the Eulerian currents, water
ice form stress and the wave radiation can be found in [1].

2 Mathematical formulation

The mathematical equation of motion for an ice floe in the marginal ice zone due
to wind, waves, and current can be written as

m

(
∂u′

∂t
+ f × u′

)
= A(τ skin

air + τ skin
water + τ

form
air + τ

form
water + τwave

rad ) − mg∇ξ + F

(2)
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Figure 2: JONSWAP wave energy spectrum.

where g is the acceleration due to gravity, m is the ice mass, A is the ice floe
surface area, ξ is the sea surface elevation, F is the ice internal stress gradient, u′
is the absolute ice velocity, τ skin

air is the wind stress on the top surface of the ice

floe, τ skin
water is the water stress on the bottom surface of the ice floe, τ

form
air is the air-

ice form stress, τ
form
water is the water-ice form stress, and τwave

rad is the wave radiation
pressure.

If the ice concentration is low, the internal stress gradient F is essentially zero.
Replacing −mg∇ξ by the geostropic current mf × Ug and neglecting F, equation
(2) can be expressed as

m

(
∂u
∂t

+ f × u
)

= A(τ skin
air + τ skin

water + τ
form
air + τ

form
water + τwave

rad ), (3)

which gives the ice floe velocity, u = u′ − Ug, relative to the geostropic current
Ug.

The stresses τ skin
air and τ skin

water are caused by skin friction. It is assumed that

|τ form
air | � |τ form

water|. Therefore, the final time-dependent equation of motion for
an ice floe becomes(

∂u
∂t

+ f × u
)

= A

m
(τ skin

air + τ skin
water + τ

form
water + τwave

rad ). (4)

Perrie and Hu [4] have described these expressions with various types of param-
eters effecting these stresses.
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In a calm sea condition, the drift of the ice floe can be assumed to be only
due to the effect of the wind. The air-ice-skin friction stress τ skin

air , thus, is usually
represented by a quadratic formula in terms of the wind speed U10,

τ skin
air = ρaC

s
ai|U10 − u|(U10 − u) (5)

where, ρa is the air density and Cs
ai is the air-ice-skin friction drag coefficient.

Following Steele et al. [6], we used Cs
ai ≈ 3 × 10−3.

3 Ice floe drift due to wind stress: model I

We simplify the governing partial differential equation with the initial condition
and obtain,

∂u

∂t
− f v = αU10 − αu

∂v

∂t
+ f u = −αv (6)

where u = (u, v, 0) are the velocity components of the ice floe in a horizontal
plane, f = (0, 0, f ) are the Coriolis force components, and α = A

m
ρaC

s
ai|U10 − u|.

Also, we have (U10 − u) = (U10 − u,−v, 0). The wind velocity vector U10 is
assumed to be parallel to the positive x− direction. Here we assume that U10 �
|u|, i.e., the speed of wind is much greater than that of the ice drift and so we can
safely assume that α is a constant parameter. The initial conditions at t = 0 are
assumed as (when there is no wind):

u(0) = 0, v(0) = 0. (7)

Using Laplace transform L{u} = ∫ ∞
0 u(t)e−stdt and L{v} = ∫ ∞

0 v(t)e−st dt

with the initial conditions (7), the simultaneous differential equations (6) can be
transformed as

(s + α)L{u} − fL{v} = αU10

s

fL{u} + (s + α)L{v} = 0

Solving these two algebraic equations by Cramer’s rule and using residue calculus,
we obtain the non-dimensional forms of the solutions as:

U − a = e−αt{b sin ft − a cos ft} (8)

V + b = e−αt{b cos ft + a sin ft} (9)

where U,V, a, and b are given by

U = u

U10
, V = v

U10
, a = α2

α2 + f 2 and b = αf

α2 + f 2 .
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Thus, the velocity field of the ice floe, i.e., the U −V plot, can be described by the
following circular spiral type solution as a function of time

(U − a)2 + (V + b)2 = (a2 + b2)e−2αt . (10)

The equation (10) reveals that the radius of the circle at t = 0 becomes simply√
a2 + b2 but when the time progresses the radius starts to decrease exponentially

and at very large time, i.e., when t → ∞, the radius of the circle becomes zero
implying that the circle shrinks to zero at the center (a,−b). This simulated behav-
ior of the drift of the ice floe is not unusual in a real field situation. The graphical
representation of our mathematical model in Fig. 3 confirms this analytical con-
jecture of the velocity field of the ice floe. The computations were carried out by
assuming a cylindrical shape for ice floe with diameter L and a thickness of T . The
air-ice skin friction drag coefficient was set to Cs

ai = 3 × 10−3, following Steele
et al. [6], the Coriolis parameter was set to f = 1.07 × 10−4s−1, and the wind
speeds at 10 m above the surface (U10) were varied between 10 m/s and 25 m/s
with 5 m/s increments.

Figure 3: Non-dimensional ice floe velocity field in the phase plane.
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To further verify this conjecture, we determine the ice floe trajectory. We replace
u and v in terms of derivatives of x and y with respect to time, such that u = ∂x

∂t

and v = ∂y
∂t

. Thus (6) will take the following form:

∂2x

∂t2
− f

∂y

∂t
= αU10 − α

∂x

∂t
(11)

∂2y

∂t2
+ f

∂x

∂t
= −α

∂y

∂t
(12)

The initial conditions are x(0) = 0, ∂x
∂t

(0) = 0. Also, y(0) = 0, ∂y
∂t

(0) = 0. The
solutions can be obtained by using the Laplace transform method.

(s2 + sα)L{x} − f sL{y} = αU10

s

f sL{x} + (s2 + sα)L{y} = 0.

Solving these two equations by Cramer’s rule and using the residue calculus, we
obtain the solutions in non-dimensional forms as

X(t) = − α2 − f 2

(α2 + f 2)
+ αt + e−αt

{
(α2 − f 2) cos ft − 2αf sin ft

(α2 + f 2)

}
(13)

Y (t) = 2αf

(α2 + f 2)
− ft − e−αt

{
(2αf ) cos ft + (α2 − f 2) sin ft

(α2 + f 2)

}
(14)

where X(t) and Y (t) are given by,

X(t) = x(t)

αU10/(α2 + f 2)
and Y (t) = y(t)

αU10/(α2 + f 2)
.

With these definitions, the ice floe trajectories can be obtained as

(X − c)2 + (Y − d)2 = e−2αt (15)

where c = −α2−f 2

α2+f 2 + αt and d = 2αf

α2+f 2 − ft, respectively. It can be easily seen

that the ice floe path is a circle with the center (c, d) and radius e−αt . The param-
eters c, d and the radius are all dependent on time t . Thus the ice floe will move
in a circular path with exponentially decreasing radius with respect to time. Fur-
ther more, for large time, the floe trajectory will follow a linear path with the
linearly dependent coordinates of the center of the circle with respect to time. At
the initial stage, i.e., at t = 0, the trajectory will be a unit circle with center at

(−α2−f 2

α2+f 2 ,
2αf

α2+f 2 ). The X− coordinate may be positive or negative according to

α2 < f 2 or α2 > f 2, respectively. However, the Y− coordinate is always a neg-
ative number. The graphical simulations of the non-dimensional trajectory of the
ice floe with varying wind speeds and their corresponding phase diagrams follow-
ing our derived mathematical formulations are shown in Fig. 4. The trajectories

 © 2008 WIT PressWIT Transactions on Engineering Sciences, Vol 59,
 www.witpress.com, ISSN 1743-3533 (on-line) 

326  Advances in Fluid Mechanics VII



Figure 4: Non-dimensional ice floe trajectories in the phase plane.

are circular spirals starting with a unit circle at t = 0 and ending with a point
circle at t → ∞; but the center is moving according to law of order O(αt) such
that X ≡ αt and Y ≡ −ft. Our computation shows that as time passes, the orbital
motion of the ice floe, due to the earth’s angular motion, gravitational pull, and
the constant wind effect, eventually becomes linear. Also, the result of this simpli-
fied approach tends to display more displacement along the y-axis than that along
the x-axis. However, this can be corrected with further mathematical computation.
One such computation is given below.

4 Ice floe drift due to wind stress: model II

The equation of motion of an ice floe (5) can be rewritten in the form,

m




∂u
∂t
∂v
∂t

0


 +




i j k

0 0 f

u v 0


 = AρaC

s
ai




√
(U10 − u)2 + v2(U10 − u)

−v
√

(U10 − u)2 + v2

0


 (16)
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We obtain, 


∂u

∂t
− f v = AρaC

s
ai

m
(U10 − u)2

√
1 + v2

(U10 − u)2

∂v

∂t
+ f u = −AρaC

s
ai

m
v(U10 − u)

√
1 + v2

(U10 − u)2

(17)

Using the binomial expansion, the above equations can be written as,


∂u

∂t
− f v = AρaC

s
ai

m
(U10 − u)2

×
[

1 + 1

2

(
v

U10 − u

)2

− 1

8

(
v

U10 − u

)4

+ 1

16

(
v

U10 − u

)6

+ · · ·
]

∂v

∂t
+ fu = −AρaC

s
ai

m
v(U10 − u)

×
[

1 + 1

2

(
v

U10 − u

)2

− 1

8

(
v

U10 − u

)4

+ 1

16

(
v

U10 − u

)6

+ · · ·
]

(18)

Considering wind speed is much greater than the ice floe drift, the above expansion
can be linearized in the form,


∂u

∂t
− f v = AρaC

s
aiU10

m
(U10 − 2u)

∂v

∂t
+ fu = −AρaC

s
aiU10

m
v

(19)

Proceeding as before, we represent equation (19) in non-dimensional form as
follows: 


∂U

∂t
− fV = α(1 − 2U)

∂V

∂t
+ f U = −αV

(20)

Using Laplace transform with initial conditions, equation (20) can be transformed
as {

(s + 2α)L(U) − fL(V ) = α

s
fL(U) + (s + α)L(V ) = 0

(21)

As before, solving these two equations, we obtain the solutions as,


U = α2

2α2 +f 2 + e−3αt/2

β

[
− βα2

2α2 + f 2 cos

(
β

2
t

)
+ α(α2 + 2f 2)

2α2 + f 2 sin

(
β

2
t

)]

V = − αf

2α2 + f 2 + e−3αt/2

β

[
αβf

2α2 + f 2 cos

(
β

2
t

)
+ 3α2f

2α2 + f 2 sin

(
β

2
t

)] (22)
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Figure 5: Non-dimensional velocity components of ice floes (dashed line: model I,
solid line: model-II).

where α2 −4f 2 = −β2 < 0. The non-dimensional velocity components of the ice
floe with the simplifications introduced in Model-I and Model-II have been com-
puted and shown in Fig. 5. Interestingly, Model-II shows further improvements and
its computational results tend to agree more closely with those of Perrie and Hu [4].
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