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Abstract

In this contribution we report on the initial steps in the development of a numeri-
cal scheme for flow through packed or suspended spheres. The spheres are semi-
resolved, meaning that their diameter is smaller than the grid spacing, but their
excluded volume is taken into account. Flow in the fluid phase is solved using the
volume-averaged equations. Particle motion is solved via Newtons law, taking into
account drag force and lubrication forces only. Despite the low resolution of the
flow field, the particle trajectories of two spheres colliding in shear flow can be
reasonable reproduced.
Keywords: Lattice Boltzmann, porous media, suspension flow, Euler-Lagrangian.

1 Subgrid particle method

The subgrid particle method is a Euler-Lagrangian method for modeling the mul-
tiphase flow problem of gas fluidised beds, cf. [1–3]. Here particles are underre-
solved, meaning that their radius is smaller than the grid spacing, but their volume
is excluded for the fluid.

In this paper we present an extension of the subgrid particle method towards
suspension flow, requiring that hydrodynamic interactions mediated via the liquid
has to be included. Such a scheme for suspensions has been proposed by Schwarzer
[4], but has been implemented in 2D. The model presented in this paper is 3D, and
is implemented in Lattice Boltzmann. Lattice Boltzmann is chosen as it has shown
to be a very versatile method capable of simulating a variety of complex fluids.
Next to suspensions and fluidized beds, the subgrid particle method can also be
applied to porous media. Governing equations for porous media flow and fluidized
bed are identical if solid phase is assumed immobile.
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The validity of the method is shown via the simulation of several benchmark
problems. We investigate the Beaver-Joseph problem of flow in a channel par-
tially filled with a porous layer [5]. This problem is challenging due to the step-
wise change in porosity, and poses for many numerical schemes serious prob-
lems [6, 12]. For the subgrid particle method for suspension flow it is important
to handle the problems with changing porosity, i.e. solid fraction. Subsequently,
we investigate the classical problem of two particle colliding in shear flow, as first
investigated by Batchelor and Green [7]. This is a good problem for testing the
validity of hydrodynamic interaction.

2 Governing equations for fluid phase

For the governing equations for the fluid phase we follow those of Feng and Yu [1].

∂tρφ = ∂αρφuα (1)

∂tρφuα + ∂βρφuαuβ = −∂αp + ∂βφµ(∂βuα + ∂αuβ) + Fdrag,α

Here ρ is the bulk density of the fluid, φ is the porosity, uα is the component
of the velocity field in the Cartesian direction xα. p is the pressure, and µ is the
dynamic viscosity of the fluid. We assume that particles are neutrally buoyant. We
note that the superficial velocity field is ũα = φuα . In suspension flow Fdrag,α is
the backflow induced by the drag of the fluid on the particles. Below we explain
how this is computed in case of suspension flow. For porous media flow it follows
from closure relations, such as the Ergun relations. In case of negligible inertia the
above equation is equal to the Darcy-Forchheimer-Brinkman equation. The Ergun
relation for a randomly packed bed of spheres in the Stokes flow regime is:

Fdrag,α = 180µ(1 − φ)2

φ2d2
p

uα (2)

3 LB scheme for flow through inhomogeneous porous media

With the Lattice Boltzmann scheme [8] we simulate the above governing equations
for the fluid phase. Via inverse Chapman-Enskog expansion we have derived this
LB scheme. In order to model spatially varying porosity stability of the scheme
requires that the speed of sound should be less than the regular value: c2

s < c2/3,
This induces however anisotropy in the viscosity µ [9]. This can be remediated via
a modified MRT scheme [10]. We briefly present the resulting LB scheme. More
details will be presented in a full length paper. In LB physical fields are repre-
sented by moments of particle distribution function fi . These particles move over
a simple cubic Bravais lattice with lattice spacing �x with discrete set of velocities
ci,α = �xi,α/�t which brings them to nearest and next-nearest neighbouring lat-
tice sites. Upon arrival the particles collide with each other, and after collision they
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propagate with their new velocity. The collide and propagation steps are described
by a discrete version of the Boltzmann equation:

fi(x + �xi, t + �t) − fi(x, t) = −�ij f
neq
j (x, t) (3)

with f
neq
i = fi − f

eq
i the non-equilibrium part of the distribution function. The

moments equilibrium part of the distribution function f
eq
i determines the govern-

ing physics, as shown by the inverse Chapman-Enskog expansion [9]. The collison
rate is controlled by the scattering matrix �ij . In the commonly used Lattice BGK
scheme �ij is linear with the unit matrix. But here we require the multiple relax-
ation scheme (MRT), which has a scattering matrix with different eigenvalues.

The moments of the equilibrium distribution, as follows from the inverse
Chapman-Enskog expansion, are equal to:

M
eq

0 =
∑

i

f
eq
i = φρ (4)

M
eq

1,α =
∑

i

f
eq

i ci,α = φρuα

M
eq

2,αβ =
∑

i

f
eq
i ci,αci,β = ρc2

s δαβ + φρuαuβ

M
eq

3,αβγ =
∑

i

f
eq
i ci,αci,βci,γ = ρc2

s (uαδβγ + uβδαγ + uγ δαβ)

Note that M
eq

0 and M
eq

1,α are conserved quantities: density and momentum.
In the MRT scheme before collision the particle distribution function is pro-

jected on the set of eigenvector, which happen to be Hermite tensor polynomi-
als [9]. Each moment of the distribution function is relaxed towards its equilib-
rium value, at a rate determined by its associated eigenvalue. After collision the
moments are projected back to the particle distribution function, and are propa-
gated to the adjacent lattice sites.

For the implementation of the drag body force, we have implemented the
scheme of Ladd, who proposed to apply one half of the forcing before the col-
lision step, and the other half after the collision.

3.1 Numerical tests

The above presented LB scheme is validated using the benchmark problem of flow
in a flat channel partly filled with a porous layer. The porous layer has a height H ,
and the clear fluid layer has a height Ly . An analytical solution to this problem
is by Beavers and Joseph [5]. Beavers and Joseph have treated the problem as a
two domain problem, with different governing equations. Hence, at the interface
of the two domains the boundary conditions have to be matched via a closure
relations. Goyeau and coworkers have proposed a single domain approach, with
one governing equation, namely Eq.(1) [12]. At the interface between fluid and
porous medium they assumed continuity of the superficial velocity and the stress.
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Figure 1: Analytical and numerical solution of flow in porous layer adjacent to
fluid in a channel between parallel plates, with Da = 0.08, and φ0 = 0.8.

Their numerical solution agrees with the analytical solution of Beavers and Joseph,
if a gradual change of porosity at the interface is assumed.

We have checked the results of Goyeau and coworkers. We have varied porosity
as φ = φ0 + 1

2 (1 − tanh(y/ζ ))(1 − φ0), with φ0 the porosity of the porous layer.
Simulations are performed with a 120 x 10 x 1 lattice, φ0 = 0.8, Darcy number
Da = 0.08, ζ/�x = 1, porous layer height H/Ly = 6, and Reynolds number
Re = umaxLy/ν = 0.7. Results are shown in figure 1, from which we observe
that our model shows good agreement with the analytical solution.

4 Suspension flow

4.1 Lagrangian scheme

In this section we describe how the solid phase in suspension flow is treated in
our scheme. Subsequently, we test the validity of this part using the benchmark
problem of Green and Batchelor.

Subgrid particles have diameter dp � �xi and mass mp. We solve their motion
via Newtons law:

mp

dvp

dt
= mpap = Fdrag,p + Fpq + Fwall,p (5)
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with Fdrag,p the drag force on the particle p, Fpq the force due to hydrodynamic
interaction between particles p and q . Between particles and confining wall there
is also hydrodynamic interaction. For other applications Newtons law is easily
extended with gravity or Brownian forces.

The drag force on the particle follows the correlation of van der Hoef [13]:

Fdrag,p = G(φ)

φ
3πµdp(u − vp) (6)

with the factor

G(φ) = 10(1 − φ)

φ2 + φ2(1 + 1.5
√

1 − φ) (7)

Note that in the limit of dilute suspensions, G(φ) → 1, and the drag force is equal
to the Stokes drag force.

The drag force is coupled back to the fluid as backflow, following Newtons third
law. If the boundaries of lattice cells intersect the volume of the particle, the force
will be distributed over the lattice cells intersecting the particle, proportional to
the volume fraction of the particle in the particular lattice cell, cf. [3]. In similar
way, the solid volume fraction is distributed over the lattice cells. In this way the
porosity field φ is computed.

The hydrodynamic interaction between particles with same diameter is given by
the two-point lubrication force. As in regular Lattice Boltzmann part of the hydro-
dynamic interaction is already resolved. Hence, we take a modified lubrication
force:

Fpq,α = −6πµd2
p(vp,α − vq,α)êr,α

(
1

h
− 1

hc

)
(8)

Note that r is the distance between the particles, which all have the same diameter
dp. The gap between particles is h = r − dp. The lubrication force is propor-
tional to the relative velocity between the particles. hc is a cut off length where the
lubrication force is zero.

If the gap between particles is smaller than hmin a spring force acts between
particles p and q:

Fspring,α = −k(h − hmin)êr,α (9)

The wall lubrication force acts only if the gap is within the cut off distance
h < hc:

Fwall,lub = −6πd2
pµvp,n

(
1

h
− 1

hc

)
ên (10)

Here ên is the outward pointing normal vector to the confining plane. If the gap is
even smaller h < hmin the spring force is acting on the particle, similar as above.
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As common in molecular dynamics Newtons law is integrated via a velocity-
Verlet scheme:

rp,α(t + δt) = rp,α(t) + vp,αδt + 1
2ap,αδt2 (11)

vp,α(t + δt) = vp,α(t) + ap,αδt

The timestep δt can vary during simulation, and will be determined by the smallest
gap between particles, as shown below. Stability of the scheme set some require-
ments to the time scales involved. Below we list the time scales 1) convective time
scale τφ = dp/vp, 2) time scale of drag force: τβ = ρpd2

p/18ρf ν, 3) kinematic

time τν = d2
p/ν, 4) spring force time scale: τ 2

k = kspring/mp 5) lubrication force
time scale τlub = ρpdph′/36ρf ν. with 1/h′ = 1/h − 1/hc. Note that dimen-
sionless numbers can be expressed in ratios of the above time scales, namely the
Reynolds number: Re = τν/τφ , and the Stokes number St = τζ /τφ . Stability sets
the following hierarchy of time scales: δt � τlub < τζ < τν � τφ .

4.2 Numerical test

We compare the collision of two equal spheres in linear shear field with the solu-
tion of Batchelor and Green. Results are shown in figure 2. Results are obtain
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Figure 2: Normalised relative trajectory of a sphere colliding with a second sphere
in a linear shear field. Solid lines indicate the solution given by Batchelor
and Green, and symbols indicate our numerical solution. Dashed line
indicates the base line to which the sphere should return after collision.
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Figure 3: Normalised relative trajectory of a sphere colliding with a second sphere
in a linear shear field, with initial vertical distance y/a = 0.4 and hmin =
0.01a, and hmin = 0.004a.

with cut off length for the lubrication hc = 2dp, dp = 0.2�x. Initial positions
of the particles are at x0 = ±5dp, and y0 = ± 1

2m
dp with m = {1, 2, . . . , 5}.

In figure 2 we show the particle trajectory (with respect to the barycentre) for
m = 2, . . . , 5. Here we have set hmin = 0.01dp. Surprisingly we obtain very good
agreement with the analytical solution of Batchelor and Green, although the flow
is not fully resolved. In figure 3 we show results for m = 1, where the particle
come very close in contact. In this case we have changed hmin to hmin = 0.005dp

and hmin = 0.002dp. We observe that the particles do not return to their initial
streamlines. Still some asymmetry in the analytical solution. Might be due to the
fact that tangential lubrication is not included [14].

This error improves if we take smaller hmin, at the cost of a significant increase
of computing time, as smaller gaps lead to smaller subgrid time steps δt . At hmin =
0.005dp we obtain nearly the same solution as the integration of the analytical
solution of the particle velocities given by Batchelor and Green.

5 Conclusions

In this paper we have given a first introduction to a numerical scheme describ-
ing flow through porous media and suspensions at a semi-resolved scale. We have
obtained reasonable agreement with benchmark problems. Currently we are inves-
tigating problems of suspensions with a multitude of particles.
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