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Abstract

This work deals with the design of a five-equation dissipative model for the
simulation of two-phase flows and its numerical approximation. Two-phase flows
are usually modeled using the well-known one-pressure two-velocity model,
which is not hyperbolic, or using a two-pressure two-velocity model, whose
complexity makes it costly. Finally, five-equation reduced models can be used, but
they feature a unique velocity, which makes them unable to reproduce complex
flows.

Our five-equation dissipative model is derived from the standard six-equation
bifluid model using the Chapman-Enskog expansion technique. Developments
to the first order lead to a hyperbolic system, and even if the model features
only one velocity, dissipative second-order terms enable it to deal with velocity
disequilibria.

A finite-volume numerical approximation of this model using a fractional
step approach is proposed. After the convective step, which takes into account
the hyperbolicity of the convective part, the solution of the dissipative step is
evaluated. Numerical tests are presented, where the capability of the model to deal
with flow featuring phenomena due to velocity disequilibria is shown.
Keywords: two-phase flows, velocity disequilibria, Chapman-Enskog expansion,
finite-volume scheme.

1 Introduction

Two-phase flows arise in a large range of applications, and their numerical
simulations are still an issue. Mixture models are often used for this purpose. But
there are situations where velocity disequilibria between the phases have to be
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taken into account and for these cases, the most widespread model is the bifluid
model based on the assumption of the phase pressure equality [1], which feature
six equations in one dimension. This model is however basically non-hyperbolic,
which can lead to numerical failures.

Thus, seven-equation models [2] have been proposed, with the addition of an
equation on the volume fraction. This ensures the hyperbolicity, but it is seldom
used because of its computational cost. Finally, five-equation models exist [3],
which includes unique pressure and velocity for both phases, but this feature
prevent them to model complex flows.

Here, we discuss a model that has been obtained using a Chapman-Enskog
expansion [4] of the six-equation model. This gives us the five-equation model
when the expansion is performed at the order zero, but expansion at the second
order gives additional terms that can model the difference between phase veloci-
ties. The derivation of this model will be presented in the next section, then we will
show some of its properties. Next, we will discuss its numerical approximation and
present eventually some numerical results.

2 Derivation of a five-equation model with additional
second-order terms

Our model is derived using a Chapman-Enskog expansion [4] of the classical bi-
fluid model, which can be written

∂tαkρk + div (αkρkuk) = 0

∂tαkρkuk + div (αkρkuk ⊗ uk) + αk∇p = Md
k + αkρkg (1)

∂tαkρkek + div (αk(ρkek + p)uk) = −p∂tαk + uI .M
d
k + αkρkuk.g

where αk are the phase volume fractions and verify α1 + α2 = 1, ρk are the phase
densities, uk the phase velocities, p the pressure and ek the phase total specific
energies, with ek = ik+u2

k/2, ik being the phase internal specific energies. g stands
for the gravity. The velocity at the interface is modeled by uI = Y1u1 + Y2u2,
and the drag force terms are written Md

k = (−1)k+1 ρ
εu

(u2 − u1), where we have
introduced the mixture density ρ = α1ρ1 +α2ρ2 and the mass fraction Yk = αkρk

ρ
.

εu denotes the characteristic time of the velocity relaxation, and is supposed to be
small.

An expansion to the order zero in εu gives the five-equation model [3] that can
be written

∂t (α1ρ1) + div ((α1ρ1)u) = 0

∂t (α2ρ2) + div ((α2ρ2)u) = 0

∂tρu + div (ρu ⊗ u) + ∇p = ρg

∂tρe + div ((ρe + p)u) = 0

(α1C2 + α2C1)(∂tα1 + u.∂xα1) + α1α2(C1 − C2) div u = 0

(2)
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where ρe = ρi+u2/2 is the total energy of the mixture, with ρi = α1ρ1i1+α2ρ2i2
the internal energy of the mixture and Ck = ρkc

2
k is the adiabatic bulk modulus of

phase k, with ck the speed of sound.
If we now perform a first order expansion, we obtain an expression of the relative

velocity between the phases as a function of the state variables. More precisely, it
can be written ur = (u1 − u2) = εu

(Y1−α1)
ρ

∇p. Introducing this expression in
system (1), we obtain the following system with additional second-order terms

∂t (α1ρ1) + div ((α1ρ1)u) = − div (ρY1Y2ur)

∂t (α2ρ2) + div ((α2ρ2)u) = div (ρY1Y2ur)

∂tρu + div (ρu ⊗ u) + ∇p = ρg

∂tρe + div ((ρe + p)u) = div ((h2 − h1)ρY1Y2ur) + ρu.g

(α1C2 + α2C1)(∂tα1 + u.∂xα1) + α1α2(C1 − C2) div u

= (Y1α1C2 − Y2α2C1)ur .∇α1 − α1α2(C1 div (Y2ur) + C2 div (Y1ur))

−
(

α1α2 +
(

α1Y1

ρ2κ2
− α2Y2

ρ1κ1

)
(Y1 − α1)

)
ur .∇p

(3)

where hk = ik + p/ρk is the specific enthalpy of phase k and κk = ( ∂ik
∂p

)k . In the
following, we will assume that this system of equations is completed with Stiffened
gas equations of state for both phase, i.e. ik is such that ik = p+γkpk,∞

(γk−1)ρk
+ ik,0, with

γk , pk,∞ and ik,0 are constants describing the thermodynamical properties of the
material.

3 Properties of the model

The five-equation model (2), and therefore the model with second-order terms (3),
is an unconditionally hyperbolic model, as shown by Murrone and Guillard [3].
Indeed, it features three distinct real eigenvalues, whose associated eigenvectors
span R

5. These eigenvalues are given by u, u − ĉ and u + ĉ, where ĉ is the well-
known speed of sound in a multiphase flow given by the equation 1/(ρĉ2) =
α1/(ρ1c

2
1) + α2/(ρ2c

2
2) [5].

A second very interesting property of this model is the existence of two
independent entropy-entropy flux pairs, one for each phase, which are consistent
with the additional second-order terms. These pairs are (−αkρksk,−αkρksku),
where sk is the specific entropy of phase k.

Indeed, algebraic manipulations of the system (3) gives two equation on the
phase entropies sk

− ∂t (αkρksk) − div (αkρksku)

= εu div ((−1)k+1YkYk′sk(Y1 − α1)∇p) − εu
ρYk′

Tk

(
(Y1 − α1)

ρ

)2

‖∇p‖2 (4)

where k′ = 3 − k. Considering equation (4), it is therefore clear that dissipative
terms due to velocity disequilibrium increase the phase entropies along the
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trajectories. As a consequence, the mixture entropy s = Y1s1 + Y2s2 is also an
increasing variable along the trajectories.

4 Numerical approximation

A fractional step is performed to solve numerically the system (3), as performed
by Guillard and Duval [6]. This consists in first solving the convective step, i.e.
solving the classical five-equation system (2), and then focusing on equations
where only second-order dissipative terms appear.

4.1 Convective step

To solve the convective step, we use the Finite Volume method proposed by
Murrone and Guillard [3]. This method is based on VFRoe-ncv methods [7], but
characteristics on both sides of the discontinuity are linearized when using the
approximate Riemann solver, which leads to a more robust solver than classical
VFRoe-ncv methods.

It should be noted that the equation on the phase 1 volume fraction is not
solved using the form given in system (2), because this form may cause numerical
instabilities when cohesion pressures pk,∞ are very different, which is usually the
case when dealing with gas-liquid flows. Indeed, when discretizing this equation,
large rounding errors arise when evaluating the pressure. Thus, the volume fraction
equation is transformed into

∂tα1 + ∇.(α1u) − α1C2

α1C2 + α2C1
div u = 0 (5)

which prevents the propagation of large rounding errors.

4.2 Dissipative step

The dissipative step consists in solving the following equations, using the state
vector t (ρY, ρe, α1, ρ, ρu)

∂tρY1 = − div (ρY1Y2ur) (6.1)

∂tρe = div ((h2 − h1)ρY1Y2ur) (6.2)

(α1C2 + α2C1)∂tα1 = (Y1α1C2 − Y2α2C1)ur .∇α1

− α1α2(C1 div (Y2ur) + C2 div (Y1ur))

−
(

α1α2 +
(

α1Y1

ρ2κ2
− α2Y2

ρ1κ1

)
(Y1 − α1)

)
ur .∇p (6.3)

∂tρ = 0 (6.4)

∂tρu = 0 (6.5)
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Because the mixture density ρ and momentum ρu are constant with respect to
time during the dissipative step, the system can be simplified and written with the
variables t (Y1, i, α1)

ρ ∂tY1 = − div (ρY1Y2ur) (7.1)

ρ ∂t i = div ((h2 − h1)ρY1Y2ur) (7.2)

(α1C2 + α2C1)∂tα1

= (Y1α1C2 − Y2α2C1)ur .∇α1 − α1α2(C1 div (Y2ur) + C2 div (Y1ur))

−
(

α1α2 +
(

α1Y1

ρ2κ2
− α2Y2

ρ1κ1

)
(Y1 − α1)

)
ur.∇p (7.3)

We use again a fractional step method to solve this system. First, a “dissipative
advection step” is performed, which consists in solving the following equation

∂tα1
Y1α1C2 − Y2α2C1

α1C2 + α2C1
ur .∇α1 (8)

Considering that ua = Y1α1C2−Y2α2C1
α1C2+α2C1

ur is a “dissipative advection velocity”, we
use a characteristic method to solve it, which ensures that the volume fraction α1
remains between 0 and 1 if it was in this interval before, providing that the cfl
condition �t ≤ min1≤i≤N

�x
|ua i | is verified, which is usually the case. If this is

not the case, the time step is reduced and several “dissipative advection steps” are
performed until the convective time step is reached.

Next, we focus on the term including the norm of the pressure gradient. We
therefore want to solve the equation

∂tα1 = −εu
α1α2(ρ1 − ρ2)

ρ2(α1C2 + α2C1)

(
α1α2 +

(
α1Y1

ρ2κ2
− α2Y2

ρ1κ1

)
(Y1 − α1)

)
‖∇p‖2 (9)

In this step, we evaluate the pressure gradient explicitly, and then we solve this
equation using a Newton method for each point.

Finally, we perform a “dissipative convection step”, which consists in solving
the system

ρ∂tY1 = − div (ρY1Y2ur)

ρ∂t i = div ((h2 − h1)ρY1Y2ur)

∂tα1 = − α1α2

(α1C2 + α2C1)
(C1 div (Y2ur) + C2 div (Y1ur))

(10)

which is done using a Newton method.
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5 Numerical results

5.1 Air-water shock tube

We present the numerical results for a shock-tube problem, which consists in a tube
of length 1.0 m, filled with air and water with a homogeneous volume fraction
α1 = 0.5 through the tube. The tube is divided into a high-pressure room for
x < 0.7 m, where the pressure is p = 109 Pa, and a low pressure room (x > 0.7 m)
where p = 105 Pa. Water and air are both governed by Stiffened gas equations of
state, with the following thermodynamical properties: γG = 1.4, pG,∞ = 0 Pa,
γL = 4.4, pL,∞ = 6.0 108 Pa. The velocity relaxation time is assumed to be a
constant. To determine it, we require that the drag force we use must be equal to
the drag force used in the Neptune code [1], which gives the equality

Md
1 = ρ

εu

(u2 − u1) = 1

8
SV ρ2CD|u2 − u1|(u2 − u1) (11)

with SV = α1Sbubble

Vbubble
= α1

3
R

is the interfacial area per volume unit and CD is the

drag coefficient, given by 24
Re (1 + 0.1925 Re0.63) [8], with the Reynolds number

Re = α2ρ22R|u2−u1|
µ2

. We take the dynamic viscosity of water µ2 = 10−3 Pa.s, and

we choose the bubble radius as R = 5 10−4 m, and the remaining variables are
found by performing single-phase shock-tube test case for water and air, which
give ρair = 0.47 kg.m−3, ρwater = 1100 kg.m−3, uair = 25000 m.s−1 and
uwater = 230 m.s−1. Thus, it is found that εu is equal to 2.4 10−5 s.

On Figure 1, we compare results obtained with the five-equation reduced model
of [3], the seven-equation model and the present dissipative model. The solution
consists in a rarefaction, a contact discontinuity and a shock traveling to the right:
the initial pressure imbalance pushes a plug of water to the right (the front is the
shock wave, the back is the contact discontinuity) and a low-pressure zone appears
in the wake (the rarefaction wave). It is seen that the addition of dissipative terms
allows to reproduce to a large extent the results of the seven equation one while
the non-dissipative model is unable to introduce any velocity disequilibria between
the two phases. We also note that the seven equation model predicts a change in the
mass fraction inside the shock zone, this feature is reproduced by the dissipative
model whereas the reduced model of [3] is unable to reproduce this feature.

5.2 Water-faucet problem

We now perform the water faucet test, which is a usual benchmark test for two-
phase flows [9]. It consists in a vertical column of length 12 m, where a column of
water is surrounded by air. Initially, the mixture is homogeneous along the tube,
where the air volume fraction is α1 = 0.2, air density and velocity are ρ1 =
1 kg.m−3 and u1 = 0 m.s−1, water density and velocity are ρ2 = 1000 kg.m−3 and
u2 = 10 m.s−1, and pressure is equal to p = 105 Pa. We again use the stiffened
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Figure 1: Comparison between the reduced model of [3] and the dissipative model
(left) and the seven-equation model (right): air-water shock tube test after
150 µs. Mesh of 2001 nodes.

gas equation of state for both phase, with the same thermodynamic properties as
in the previous test.

At time t = 0 s, a gravity field with g = 9.81 m.s−2 is applied, which causes
a lengthening of the water jet. This test is interesting because air and water
have different velocities, and therefore the five-equation model completely fails
to reproduce results given by the six- or seven-equation models. Figure 2 shows
the results for the dissipative five-equation model and the seven-equation model on
a mesh of 1001 nodes. The velocity relaxation time has been fixed to εu = 103 s,
because this test is usually performed with no drag force, and although we cannot
have zero drag in this five-equation model, such a value will reduce it dramatically.
It should be noted that this values is also used for the seven-equation model. The
pressure relaxation time is set to εp = 10−12 s for the latter model, which ensure
an equality of the phase pressures.
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Figure 2: Comparison between the dissipative five-equation model (left) and the
seven-equation model (right): Water-faucet test after 0.4 s. Mesh of 1001
nodes.

If we make the approximation of the incompressibility of the liquid and if we
neglect the variations of the gas pressures, an analytic solution can be found. It
can be seen on Figure 2 that the dissipative five-equation model reproduces in a
large extent the variation of the air volume fraction. It can be even noticed that
the scheme is less diffusive than the seven-equation model, because of the large
number of waves of the latter. Thus, our model can deal with flow phenomena
including large velocity differences between the phases, even if it is originally
designed for small relative velocities.

6 Conclusion

We have derived a five-equation dissipative model from the standard bifluid six-
equation model using first order Chapman-Enskog expansions. Thanks to these
dissipative terms, this model can deal with flows featuring differences between
phase velocities, although it features only one velocity. Numerical results are very
promising, and show that the model can simulate flows with shocks or counter-
currents in an accurate way, while being hyperbolic and less complex than the
two-pressures two-velocity models.
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