
Numerical and experimental results for the
warming of cylindrical timber segments

D. A. Gigliotti & P. J. Montgomery
Mathematics Program, University of Northern British Columbia,
3333 University Way, Prince George, B.C., Canada, V2N 4Z9

Abstract

As part of an industrial process in the forestry industry, pre-cut segments of
debarked logs are conditioned by placing the wood segments in a warm water
shower. For wood which is initially cold (or sometimes frozen) and has a rela-
tively high moisture content, the conditioning process results in a net increase in
temperature and change in moisture content. As a porous media, wood has a fairly
complex structure due to the orientation and sizes of the cells which make up the
fibers. In addition, the moisture content of the recently debarked log segments is
relatively high, the moisture being almost completely composed of liquid water
trapped by capillary forces. Simplistic models which assume a constant moisture
content have previously been used to predict conditioning time. However, as is
often the case in reality, the complexity of the problem is such that more accurate
modelling is desired.

To learn more about the conditioning process, preliminary experiments were
conducted using a data logger and an array of fifteen thermocouples placed radi-
ally at three points on a log segment which was then put through a full conditioning
cycle. Theoretical model equations are presented, which take into account both the
liquid and vapour components of the water, and spatial averaging is used to create
a system of nonlinear partial differential equations. The problem is then simplified
through some basic assumptions to pose a set of coupled differential equations for
energy and moisture transport in one spatial dimension. A finite difference numer-
ical method is used to solve the initial boundary value problem for the coupled
system of nonlinear partial differential equations, and some numerical results are
compared to experimental data for the one dimensional problem. Limitations of
the model are identified and discussed.
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1 Introduction

The problem studied herein arises from an industrial application in the manufactur-
ing of plywood. Of direct concern to industry is finding a quick and simple method
to predict the amount of time required to warm pre-cut and debarked cylindrical
wooden log segments from their ambient temperature outside to a desired produc-
tion temperature. This process is known as conditioning and can be achieved in
many ways, for example, submersing the segments in a hot water bath or exposure
to hot steam. In this study, conditioning is achieved by placing the wood in a con-
tinuous shower of warm water, and waiting for a pre-determined time to move the
wood onto the next stage in the production process. As a porous media, fluid within
the cell structure can move from cell to cell under the influence of temperature and
concentration gradients, and therefore the transport of water must be considered as
an integral part of the conditioning process.

The specific problem considered is therefore to create a model for the reheating
of a cylinder of wood through partial contact of its outer boundary with very humid
air. In the next section, a set of governing equations are posed which describe the
reheating of wood in this particular circumstance. The model takes into account the
porous nature of wood, and the multiphase (liquid and gas) flow of water within the
porous media in order to obtain a set of partial differential equations for the volume
averaged temperature and moisture content. In section 3, the equations numerical
solutions of the equations are compared to experimental data gathered on site.
Some concluding remarks follow, and limitations of the model are discussed.

2 Model equations

A first attempt at modelling the heating of a homogeneous cylinder is typically
achieved through the application of a linear form of the heat equation,

∂T

∂t
= ∇ · kq∇T (1)

where T is the temperature, t time, and kq a heat conduction coefficient. Equa-
tion (1) has been well-studied [1], although there are several factors which are
important when studying the warming of wood which require a more delicate and
thoughtful approach. For example, the coefficient kq can depend strongly on mois-
ture content, and to a lesser extent, temperature, tree species, and spatial position
within the wood [2]. Equation (1), coupled with an analogous moisture diffusion
equation, has been used to model wood heating [3] and the non-isothermal drying
of dimensional lumber [4]. Other limitations are imposed by assuming equation
(1), particularly regarding moisture content. Heating and surface evaporation can
result in the redistribution of fluid within the wood. Indeed, starting from the time
of harvest, wood immediately begins to lose moisture, a process which is acceler-
ated with de-barking. The humid environment employed during conditioning acts
to reduce surface evaporation but still allows for the formation of pressure gradi-
ents which result in a nonhomogeneous moisture distribution.
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Whitaker [5] completed a thorough characterization of the transport of energy
and mass in general porous media, which was later applied to dimensional lumber
drying by Spolek [4]. Whitaker’s approach [5] considered the phases of water and
the solid wood separately. The temperature T of the wood is modelled with a linear
enthalpy approximation and Fourier’s law of head conduction as a generalization
of equation (1).

ρσ (cp)σ

(
∂Tσ

∂t

)
= kσ∇2Tσ + �σ . (2)

In equation (2), and in later equations, the standard symbols are used: ρ for density,
cp heat capacity, k thermal conductivity coefficient, and � for heat sources. The
subscript σ is used for all of these variables to denote the properties within the
solid wood.

The liquid phase obeys a similar continuity equation, with the added compli-
cation of transport, and can be stated (with subscripts β denoting liquid phase)
as

ρβ(cp)β

(
∂Tβ

∂t
+ vβ · ∇Tβ

)
= kβ∇2Tβ + �β. (3)

In equation (3) a linear relationship between enthalpy and temperature is again
used, as is Fourier’s law of conduction within the liquid.

For the gas phase, the temperature of the water vapour and the existing inert
gases (such as air) are taken into account to give a generalization for the gas phase,
written with a subscript γ as

ργ (cp)γ

(
∂Tγ

∂t
+ vγ · ∇Tγ

)
= kγ ∇2Tγ + �γ − ∇ ·

(i=N∑
i=1

ρiui (cp)iTγ

)
, (4)

where the last term represents the contribution due to the existence of N inert gases
with diffusion velocity ui and heat capacity (cp)i.

Equations (2), (3), and (4) are local in nature, and are standard expressions in
the transport of fluids with the inclusion of diffusion and a source/sink term (�).
To obtain relationships between the bulk properties of the wood, the equations
must be averaged over a given volume. For example, for a volume element V , the
average temperature of the solid phase is given by

〈Tσ 〉 = 1

V

∫∫∫
V

Tσ dV . (5)

Each of equations (2), (3), and (4) are integrated to create volume averaged
equations, which are subsequently manipulated using integration by parts theorems
to bring in various phase boundary conditions into the problem. The individual
equations are be then added together to create a total thermal energy equation, for
the averaged temperature 〈T 〉 [5]

〈ρ〉cp

∂〈T 〉
∂t

+ [ρβ(cp)β〈vβ〉 + 〈ργ 〉γ 〈(cp)γ 〉γ 〈vγ 〉] · ∇〈T 〉 + �hvap〈ṁ〉
= ∇ · KT

eff ∇〈T 〉 + 〈�〉. (6)
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The process leading to the derivation of equation (6) is quite detailed due to the
consideration of all of the phases, and the details may be found elsewhere [5]. In
equation (6) a few shorthand terms have been introduced: the superscript γ denotes
an average over the portion of the volume element in relation to that phase, 〈�〉
denotes a combined source term, and 〈ṁ〉 denotes the mass rate of vaporization per
unit volume. In addition, the enthalpy of vaporization per unit mass at temperature
〈T 〉 is given as �hvap , and being a non-homogeneous material, KT

eff is a second
order tensor which encompasses the thermal diffusivity in each of the three spatial
dimensions.

A second equation can be created for the moisture content by applying an
approach analogous to the derivation of equation (6). Again, the details are left
to Whitaker [5], and the result is stated for the saturation, S, a quantity which rep-
resents the mass fraction of moisture in the form of liquid and vapour to the fully
saturated mass.

φ
∂〈S〉
∂t

+ ∇ ·
(

〈vβ〉 + 〈ρ1〉γ 〈vγ 〉
ρβ

)
= ∇ ·

[ 〈ργ 〉γ
ρβ

D
(1)
eff ∇

( 〈ρ1〉γ
〈ργ 〉γ

)]
. (7)

In equation (7), the effective diffusivity D
(1)

eff , is a second order tensor which
encompasses diffusivity of the vapour in each of three spatial dimensions, ρ1 is
the vapour density, and φ is the porosity or volume fraction of the void space in
the wood.

To close the system, the momentum equations for the liquid and gas phases are
used together with Darcy’s law to relate the flow rate to the pressure gradient. The
pressure P is then introduced in place of velocity, with the introduction of per-
meability constants K (with appropriate subscripts) The resulting two equations,
neglecting heat sources and sinks 〈�〉, are stated as

〈ρ〉cp

∂〈T 〉
∂t

−
[
Kβρβ(cp)β

µβ

(∇〈Pβ 〉β − ρβg) + Kγ 〈ργ 〉γ 〈(cp)γ 〉γ
µγ

× (∇〈Pγ 〉γ − 〈ργ 〉γ g)

]
· ∇〈T 〉 + �hvap〈ṁ〉 = ∇ · KT

eff ∇〈T 〉, (8)

and

φ
∂〈S〉
∂t

− ∇ ·
[
Kβ

µβ

(∇〈Pβ 〉β − ρβg) + 〈ρ1〉γ Kγ

ρβµγ

(∇〈Pγ 〉γ − 〈ργ 〉γ g)

]

= ∇ ·
[ 〈ργ 〉γ

ρβ

D
(1)
eff ∇

( 〈ρ1〉γ
〈ργ 〉γ

)]
. (9)

Equations (8) and (9) contain several coefficients which must be determined
prior to solving the equations. By applying a mechanistic model of wood struc-
ture, the properties of wood may be used to develop theoretical relationships and
values for many of the parameters to decrease the dependence on experimental
parameters [2, 4]. As in the development of the equations, the technical details call
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for a more thorough examination of their derivation; however, for brevity, only the
impact of the simplifications will be used herein with the details referred to where
appropriate. For example, the volume fraction φ can be determined by an analytic
dependence on cell parameters [4].

The liquid and gas phase pressures remaining in equations (8) and (9) can be
removed by assuming the gas phase acts as an ideal gas, and that the capillary
pressure Pc is the difference between the gas phase pressure and liquid phase pres-
sure, [5, 4]. The liquid phase pressure is therefore expressed as a function of the
gas phase pressure and the capillary pressure, 〈Pβ 〉β = 〈Pγ 〉γ − 〈Pc〉c. The liquid
pressure gradient can then be expressed by the following linear expansion,

∇〈Pβ 〉β =
(

∂〈P1〉γ
∂T

+ ∂〈P2〉γ
∂T

− ∂〈Pc〉c
∂T

)
∇〈T 〉

+
(

∂〈P1〉γ
∂S

+ ∂〈P2〉γ
∂S

− ∂〈Pc〉c
∂S

)
∇S. (10)

Analytic expressions for the partial pressures and capillary pressures in equation
(10) are given by Spolek [4] as functions of temperature, saturation, and number
of constants. In the interest of writing equation (10) in a more compact form, the
following substitutions are made,

∇〈Pβ 〉β = −(CT,c − CT,γ )∇〈T 〉 − (CS,c − CS,γ )∇〈S〉. (11)

In addition, a dimensionless temperature Q is used (M is already dimensionless
definition) such that Q = (T − T0)/(T∞ − T0), where T0 is the average initial
internal temperature of the log, and T∞ is the temperature of the bathing fluid.
Since the saturation S does not include the hygroscopically bound water, it will
be substituted for with the moisture content M through the relation S = (M −
Mf sp)/(Mmax −Mf sp), where the subscript f sp denotes the fiber saturation point,
and the subscript max refers to the maximum possible moisture content the wood
can contain. The fiber saturation point is a species dependent parameter which is a
measure of the moisture content due to hygroscopically bound water only.

In addition, as wood dries, surface tension forces the small valve-like openings
which connect neighbouring cells, known as pits, to be forced shut. A chemical
bond between the valve and pit opening forms, effectively sealing off the pit open-
ing to gas transport, causing the gas phase to become trapped and permitting the
assumption of a gas phase permeability very close to zero, (Kγ = 0) [2]. Although
the bulk gas phase transport is neglected, vapour transport continues as a diffusive
process which is captured in a diffusion coefficient denoted Dm, leading to the
following simplification,

〈ργ 〉γ D
(1)
eff ∇

( 〈ρ1〉γ
〈ργ 〉γ

)
= ρβDm∇M, (12)

where M is the moisture content, and Dm is a combined vapour and bound water
moisture diffusion coefficient.
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Employing the above simplifications, and neglecting transport due to gravity
along with equations (12), and (10), permits equations (8) and (9) to be written as
a more simplified set of transport equations,

〈ρ〉cp

∂〈Q〉
∂t

+
[
ρβ(cp)βKβ

µβ

(
(CT,c − CT,γ )�T ∇〈Q〉

+ (CS,c − CS,γ )
1

�M
∇〈M〉)

]
· ∇〈Q〉 = ∇ · Kq∇〈Q〉, (13)

and

φ

�M

∂〈M〉
∂t

+ ∇ ·
[(

Kβ

µβ

(CT,c − CT,γ )

)
�T ∇〈Q〉

+
(

Kβ

µβ

(CS,c − CS,γ )

)
1

�M
∇〈M〉

]
= ∇ · Dm∇〈M〉. (14)

3 Results

the thermal conductivity can be reduced to a scalar quantity kq , and A moisture
diffusion coefficient, Dm, is introduced in an analogous way to the thermal con-
ductivity derivation [4].

This section considers the restriction of equations (13) and (14) to cylindrical
polar coordinates, with only the radial motion considered, such that Q = Q(r, t)

and M = M(r, t). The equations are simplified further by suppressing the volume
average bracket notation, and using the notation CT = (CT,c − CT,γ ) and CS =
(CS,c −CS,γ ). In addition, the second order tensors KT

eff and Dm can be reduced to
scalar quantities kq and dm respectively, when considering only the radial direction.
The resulting equations are expressed as

ρcp

∂Q

∂t
+

[
ρβ(cp)βKβ

µβ

(
CT �T

∂Q

∂r
+ CS 1

�M

∂M

∂r

)]∂Q

∂r
= 1

r

∂

∂r
rkq

∂Q

∂r
, (15)

and

φ

�M

∂M

∂t
+ 1

r

∂

∂r
r
Kβ

µβ

[
CT �T ∇Q + CS 1

�M
∇M

]
= 1

r

∂

∂r
rdm

∂M

∂r
. (16)

Equations (13) and (14) are applied to model a symmetric simplification of
log conditioning, considering only time-dependent radial transport of heat and
moisture. The initial boundary value problem is solved in the domain t > 0 and
0 < r < R. The boundary conditions at r = 0 are the standard symmetry con-
ditions of zero flux. The outer boundary conditions at r = R are somewhat more
complex, as a balance of energy and mass must be maintained at this point caus-
ing the latent heat of evaporation to be included to derive a generalized Neumann
boundary condition which couples moisture, temperature and the flux at the sur-
face.
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The thermal boundary can be approximated by the standard convective heat flux
boundary condition, q̇ = hq(T (R, t) − T∞) [6], where hq is the surface ther-
mal transfer coefficient, and T∞ is the temperature of the bathing fluid. The hor-
izontal stacking of the cylindrical log segments in the conditioning tunnel give
rise to horizontal voids between neighboring log segments. By approximating
the voids as cylindrical, and the flow of the humid air in the voids to be in the
laminar range, the surface heat transfer coefficient hq can be expressed as hq =
(kγ /D)0.023Re0.80

D Pr0.33, where kγ is the thermal diffusion coefficient of humid
air, D is the diameter of the void, Re is the Reynolds number of the flow, and Pr

is the Prandtl number of the humid air.
The boundary condition for the moisture content should ideally be analogous

to the thermal flux condition. Unfortunately, a mass flux boundary which does
not result in an ill-posed problem has not yet been found and will therefore be
approximated with a Dirichlet condition, M(R, t) = M0, where M0 is an appro-
priately chosen initial moisture content at the surface. Although a Dirichlet mois-
ture boundary results in a somewhat unphysical moisture boundary condition, it
will suffice as a first approximation until appropriate mass flux boundaries at the
surface can be derived.

With the initial and boundary conditions specified, a finite difference numeri-
cal approach was taken to find numerical solutions. A forward in time central in
space scheme was chosen, with some care employed to obtain second order spatial
approximations for the Neumann boundary conditions. An exciting feature of this
research program was the ability to conduct measurements of log conditioning,
and data was collected for several experiments. Thermal sensors were placed in
the log in a straight line along a ray outwards from the center with one at r = 0 cm
(core), one at r = R (surface), and three more positions between the core and
the surface. The data from the temperature sensors was recorded over a period
of several hours during conditioning. Moisture content was not measured during
the experiment, however a rough estimate of initial and final moisture content was
measured by removing samples for controlled measurement in the laboratory. The
main sources of error were in the temperature measurement and placement of the
thermocouples, and the lack of precision in moisture content measurements.

A selected result is displayed in Figure 1, which depicts temperature versus time
giving a comparison of the model to experimental temperature data 30 cm from the
end, and at both the core and 10 cm radially form the core. The thin dotted lines
represent the placement error of the thermocouples.

4 Conclusion

The modelling of any industrial process can be plagued by oversimplification
which causes the problem to be either trivial or too far removed from reality to be
of much use. In this case, the modelling of log conditioning is a complicated pro-
cess involving a consideration of the vapour and liquid phases of moisture moving
within a the porous wooden cellular network. Through volume averaging, a system
of differential equations, derived from a lumber drying model, were applied and
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Figure 1: Comparison of theoretical model to experimental data for Douglas Fir,
where T0 = 5.3◦C, M0 = 0.80, R = 15 cm, Z = 30 cm.

found to model the experimental results relatively well within experimental error.
Some underestimation of the temperature is seen which could be due to heating
from the end of the log, which is neglected in the one dimensional problem. In
addition, the Dirichlet boundary condition imposes a relatively unphysical mois-
ture boundary which could cause the model to converge to an incorrect steady-
state. Ongoing research will assist in probing the dependence of various types of
boundary conditions, and generalizing the problem to more than one spatial dimen-
sion to account for these minor discrepancies.
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