
Validation of a CFD model for flow in 
meandering rivers using an experimental 
test-setup: first results 

K. Delecluyse1, W. Brantegem1, P. Troch1, R. Verhoeven1 
& J. Vierendeels2 
1Laboratory of Hydraulics, Department of Civil Engineering,  
Ghent University, Ghent, Belgium 
2Department of Flow, Heat and Combustion Mechanics,  
Ghent University, Ghent, Belgium 

Abstract 

A 3D Reynolds Averaged Navier Stokes (RANS) model of a meandering 
channel with rectangular cross-section has been developed using the commercial 
software package FLUENT 6.2. This model solves the 3D Navier-Stokes 
equations using the PISO scheme for the pressure-velocity coupling and the 
realizable k-ε model for turbulence closure. Output of the numerical model is 
compared to validation experiments conducted in a physical model, which 
represents two wavelengths of a regime channel and allows for the measurement 
of flow patterns at several discharges and variable bed forms. The computed 
water depths and velocity profiles of the CFD model output are in good 
agreement with the physical model results. The simulations slightly underpredict 
the streamwise velocities, which reach a maximum just before the apex of the 
meander bend, at the inner bank in the lower part of the flow depth. The CFD 
model also captures the motion of the secondary current or transverse flow well, 
showing the same direction of current along the entire second wavelength.  
Keywords: CFD, numerical model, meandering rivers, open channel flow, 
experimental results. 
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1 Introduction 

During the last century, a large number of rivers have been artificially 
straightened in order to improve the manoeuvrability of ships, ease the drainage 
of rain water and make more space for expanding urban areas. These measures 
however brought along a number of drawbacks. Nowadays, the trend in river 
management is to give the river back its former space and to restore its natural 
flow and meandering pattern. 
     In order to accurately predict this remeandering process of artificially 
straightened rivers, a detailed knowledge of the flow characteristics and sediment 
transport processes in meandering river bends is required. The study of two- and 
three-dimensional flow in open channels has recently experienced a surge of 
interest in the application of computational fluid dynamics (CFD) to 
hydrological and geomorphological problems, showing great potential in those 
problems where the spatio-temporal boundary conditions may vary over a wide 
range, thus often making field study either impracticable or impossible. 
     In this paper a 3D CFD model is presented to investigate and predict the flow 
in a meandering river. To validate the numerical model, an experimental model 
was built which represents two wavelengths of a regime channel. Previous 
studies have shown that combining the numerical models with a physical model 
is a useful method to validate the numerical output, although it can be difficult to 
trace whether any differences between the two are caused by numerical 
simplifications or experimental errors (e.g. Olsen and Kjellesvig [1]; Rajendran 
et al [2]). A first set of experiments with rectangular, fixed cross-section and 
steady discharge rate was performed, and the results are presented in this paper. 
Both the experimental and numerical results are compared to the theory of flow 
in a meandering river, and discussed in detail.  

2 Experimental model 

The experimental model shown in Figure 1 represents two wavelengths of a 
regime channel, the dimensions of which were determined according to Williams 
[3]. At the inlet, the discharge is determined by means of a calibrated triangular 
weir. Before entering the channel geometry, the water flows through a series of 
parallel tubes, to ensure a uniform velocity profile. At the outlet, the water flows 
over a rectangular weir with adjustable height, and is collected in a container 
after which the water gets pumped into the inlet construction again, thus forming 
a closed circuit. The sides and bottom of the entire second wavelength are made 
out of a transparent material to allow for the future use of Particle Image 
Velocimetry (PIV) measurement techniques. In the early stages of the research, 
this model is solely used to measure velocity profiles in a meander bend, without 
incorporating sediment transport processes. For this reason, the rectangular cross 
section and the discharge remain constant during the experiment. Later on, when 
the sediment transport module will be introduced into the numerical model, the 
experimental model will be adjusted to enable variable cross-sections and 
discharges. 
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Figure 1: Geometry and computational grid for the experimental and 
numerical models. Indicated dimensions are in [m]. The numbers 
refer to the cross-sections in which velocity measurements were 
performed. 

3 Hydrodynamic model 

3.1 Model equations 

The flow field is determined by the following Reynolds-averaged Navier-Stokes 
(RANS) and continuity equations, written in cartesian coordinates: డ௨೔డ௫೔ ൌ 0                                                            (1) డ௨೔డ௧ ൅ డ൫௨೔௨ೕ൯డ௫೔ ൌ െ ଵఘ డ௣డ௫೔ ൅ ଵఘ డఛ೔ೕడ௫ೕ ൅  ௜     (2)ܨ

where ui (i = 1, 2, 3) are the velocity components; Fi is the gravity force per unit 
volume; ρ = fluid density and p = pressure. The effective shear stresses τij are 
calculated with the k-ε turbulence model (Rodi [4]), which employs the eddy 
viscosity relation ߬௜௝ ൌ ߥሺߩ ൅ ௧ሻߥ ൬డ௨೔డ௫ೕ ൅ డ௨ೕడ௫೔൰ െ ଶଷ  ௜௝݇           (3)ߜ

with ߥ௧ ൌ ܿఓ݇²/(4)                  ߝ 

where the turbulent kinetic energy k and its dissipation rate ε determining the 
eddy viscosity νt are obtained from the following model equations: డ௞డ௧ ൅ డ൫௨ೕ௞൯డ௫ೕ ൌ డడ௫ೕ ൬ఔ೟ఙೖ డ௞డ௫ೕ൰ ൅ ܩ െ డఌడ௧ (5)    ߝ ൅ డሺఌሻడ௫ೕ ൌ డడ௫ೕ ൬ఔ೟ఙഄ డఌడ௫ೕ൰ ൅ ሺܿఌଵܩ െ ܿఌଶߝሻ ఌ௞       (6)  

with ܩ ൌ ௧ߥ ൬డ௨೔డ௫ೕ ൅ డ௨ೕడ௫೔൰ డ௨೔డ௫ೕ           (7) 
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the production of k. The following values of the model coefficients are used: cµ = 
0.09; cε1 = 1.44; cε2 = 1.9; σk = 1 and σε = 1.2. 

3.2 Water depth calculations 

In this paper, the Volume of Fluid Technique (VOF, Hirt and Nichols [5]) has 
been incorporated into the solution of the Navier-Stokes equations in order to 
predict the water surface elevation, as opposed to a ‘fixed lid approach’. For use 
of the latter, detailed knowledge of the river bathymetry is absolutely necessary, 
as any incorrect ‘fixed lid’ will affect the distribution of the mass and momentum 
of the fluid flow in the numerical simulation, leading to errors in the prediction 
of bed shear stress, and consequently, bed load transport (Ma et al [6]). Although 
the model presented in this paper does not yet include a sediment transport 
module, such a module will be implemented in the near future. Therefore, the 
VOF technique was selected for water depth calculations. 
     Using the VOF technique, the flow consists of two phases: water and air. The 
volume fraction of the water, F, is introduced in each computational cell and is 
defined as follows: ܨ ൌ ఋΩೢೌ೟೐ೝఋΩ೎೐೗೗                       (8) 

where δΩcell is the volume of the computational cell and δΩwater is the fraction of 
the cell filled with water. Thus, the following applies: 

ቐ ܨ ൌ ܨݎ݁ݐܽݓ ݂݋ ݈݈ݑ݂ ݏ݅ ݈݈݁ܿ    ,1 ൌ 0ݎ݅ܽ ݂݋ ݈݈ݑ݂ ݏ݅ ݈݈݁ܿ    ,0 ൏ ܨ ൏  (9)    ݎ݅ܽ ݀݊ܽ ݎ݁ݐܽݓ ݄ݐ݅ݓ ݈݈݂݀݁݅ ݏ݅ ݈݈݁ܿ    ,1

     The governing fluid flow equations for the water flow and the air flow above 
the water are expressed in a single form as given by eqns. (1) and (2), but the 
physical properties that appear in eqns. (1) and (2) are different and are defined 
by the volume-fraction-weighted average of physical properties of the air and 
water as follows: ߩ ൌ ௪௔௧௘௥ߩܨ ൅ ሺ1 െ ߤ ௔௜௥              (10)ߩሻܨ ൌ ௪௔௧௘௥ߤܨ ൅ ሺ1 െ  ௔௜௥              (11)ߤሻܨ
     According to the law of mass conservation of air and water, the volume 
fraction of the water satisfies డிడ௧ ൅ ௜ݑ డிడ௫೔ ൌ 0           (12) 

     By numerically solving the volume fraction eqn. (12), the volume fractions of 
water, F, and of air, 1-F, in a control volume cell may be obtained. 

3.3 Boundary conditions 

As upstream boundary condition, the velocity distribution for both phases and 
the water depth are given, consistent with the water discharge through the model. 
At the downstream end the water depth is specified, along with a zero gradient 
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boundary condition. At the river bed, the standard wall function (Launder and 
Spalding [7]) is employed, given by: ݑା ൌ ଵ఑ ݈݊ሺݕܧାሻ െ  ௦ାሻ                 (13)ܭሺܤ∆

with u+ = u/u* , y+ = y/y*, Ks
+= Ks/y*,y*= ν/u* and u*=(τw/ρ)1/2. In this, u is the 

fluid velocity parallel to the solid wall, y is the distance from the wall, u* is the 
wall friction velocity, Ks is the wall roughness height, E is a constant taking a 
value of 9.8, ∆B is an expression dealing with hydraulically rough beds, κ is Von 
Karman’s constant which usually takes a value of 0.4187, ν is the dynamic 
viscosity of the fluid and τw is the shear stress at the solid wall boundaries. In the 
study reported in this paper, a smooth bed and vertical banks have been 
employed in the model, so that ∆B=0. The turbulent kinetic energy k and 
dissipation rate ε of the fluid flow at the upstream and downstream boundaries 
are determined by specifying the turbulent intensity of the fluid flow. In this 
paper a turbulent intensity of 10% was assumed for both upstream and 
downstream boundaries (Ma et al [6], Nallasamy [8]). 

3.4 Solution strategy 

Having set up the grid and specified the necessary boundary conditions, the 
governing fluid flow equations are solved by means of the control volume 
method. The Power Law scheme (Patankar [9]) is used for the space 
discretisation of the convection terms, while a second order implicit scheme is 
used for the discretisation of the transient terms. For pressure-velocity coupling, 
the PISO scheme is employed (Issa [10]). This scheme is part of the SIMPLE 
(Patankar [9]) family of algorithms and is based on the higher degree of the 
approximate relation between the corrections for pressure and velocity. The main 
idea of the PISO algorithm is to move the repeated calculations required by 
SIMPLE and SIMPLEC inside the solution stage of the pressure-correction 
equation. After one or more additional PISO loops, the corrected velocities 
satisfy the continuity and momentum equations more closely. The PISO 
algorithm takes a little more CPU time per solver iteration, but it can 
dramatically decrease the number of iterations required for convergence, 
especially for transient problems. 

4 Results 

In order to validate the numerical model, physical model experiments were 
conducted, along with several numerical experiments, in which the sensitivity of 
the computations to changes in model parameters was tested. The following 
section discusses the main results obtained from these experiments. 

4.1 Water depth 

A first experiment was conducted with the outlet height at 5 cm, and a steady 
discharge Q of 2 l/s. Measurements along the experimental channel length show 
that the numerically computed water depths are a very accurate representation of 
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the water depths in the physical model. Moreover, the water depth drops in the 
inner bends and rises in the outer bends, in agreement with the theory of flow 
through meander bends.  
     To investigate the influence of the discharge on the computed water depths, a 
second numerical experiment was conducted, with the discharge set at 2.5 l/s. 
Because the type of weir at the outlet remains the same in all experiments, the 
numerical results can be validated by means of the calibration formula for the 
outlet weir ܳ ൌ ଶଷ  ௗܾ݄యమඥ2݃                      (14)ܥ

with Q the discharge, b the outlet width, h the water height above the outlet weir, 
g the gravitational acceleration and Cd the dimensionless discharge coefficient. 
For the same type of outlet, the value of Cd is a constant. For both experiments 
the value of h was calculated by subtracting the height of the outlet weir from the 
computed water depth, and was substituted in eqn. (14). This yielded a Cd of 
0.822 for the first experiment and a Cd of 0.812 for the second experiment. Thus, 
it can be concluded that the numerical model accurately predicts the water depths 
for any value of the discharge Q.  
     In a third numerical experiment, the height of the outlet weir was changed 
from 5 cm to 6 cm, with a discharge of 2 l/s. According to eqn. (14), the value of 
the overflow height h should remain unaffected by this change. Calculation of h 
for the first experiment yielded a value of 2.64 cm, and a value of 2.58 cm for the 
third experiment. Thus, it can be concluded that the numerical model adapts very 
well to changes of the height of the outlet weir and calculates the water depths 
accordingly. 

4.2 Velocity profiles 

Velocity measurements were carried out in several cross sections along the 
experimental channel length, by means of an electromagnetic velocity meter. 
Each cross section consists of 12 measuring points. Analysis of the 
measurements shows that the streamwise velocity reaches its maximum value at 
the inner bank, right before the apex of the meander bend. For each cross-
section, values of the streamwise velocity are higher at the inner bank than at the 
outer bank, and reach their minimum values at the bottom, as is to be expected. 
Fig. 2 shows the experimentally measured and numerically computed streamwise 
velocities for cross-section 17.  Comparison shows that the computed velocities 
agree reasonably well with the measured velocities, only slightly underpredicting 
the higher values at the top of the section. The numerical velocity profiles are 
according to the theoretical profiles. Because of technical limitations, the 
measuring grid for the velocity measurements in this first set of experiments was 
too coarse to determine a full experimental velocity profile. In a next series of 
experiments, PIV measurements of the cross sections will be conducted, 
providing a more accurate representation of the physical velocity profiles. This 
will allow for a more detailed comparison of the measured and computed 
velocities, and a better evaluation of the overall accuracy of the numerical 
computations. 
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Figure 2: Comparison of experimentally measured and numerically 
modelled  streamwise velocities at cross-section 17. Reported 
values are in [m/s]. Upper left frame: distribution of measuring 
points, dimensions are in [cm]; upper right frame: experimental 
streamwise velocities measured with the electromagnetic flow 
meter; bottom frame: contour plot of numerical results. 

4.3 Secondary current 

In order to see whether or not the numerical model captures the motion of the 
secondary current or transverse flow well, the experiment with Q = 2.5 l/s and an 
outlet height of 5 cm was repeated. In several sections of the experimental 
model, streamlines were visualized with pieces of very fine string, suspended 
near the bottom and near the water surface. This visualization could then be 
compared with the streamline visualization performed on the numerical output. 
Comparison yields that both the experimental and the numerical streamlines 
follow the same path, which is a good first indication that the numerical model 
captures the motion of the secondary current. The numerical model also allows 
for cross-sectional vector plots of the secondary current. This way, the output 
can be compared with the theoretical motion of the secondary current in meander 
bends, which indicates that the flow consists of a primary rotational cell, and 
alternates between a clockwise and counter-clockwise motion every other 
meander bend. Together with this rotational cell, a smaller, counter-rational cell 
appears near the outer bank (Blanckaert and Graf [11], Blanckaert and 
De Vriend [12]).  
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Figure 3: Vector plots of the secondary current. Primary flow direction is 
into the page. The numbers refer to the sections as defined in 
Fig. 1. 

Fig. 3 shows vector plots of the secondary current in several cross-sections of the 
three meander bends. It can be seen that there is indeed only one rotational cell, 
but that the current does not alternate its direction. Moreover, extra numerical 
simulations with altered geometries show that the direction of the secondary 
current is dictated by the first meander bend the flow encounters, and that it 
keeps this direction along the entire model length. In reality, the bathymetry of 
the deformed river bed in between river bends dissipates the motion of the 
secondary current in such a way that but a fraction of its strength remains, if not 
completely disappears. Therefore, the secondary current has little or no ‘motion 
history’ when it reaches the next bend, and it takes on the natural rotation in this 
bend. However, in the experimental and numerical model, there is no dissipation 
due to a deformed river bed, neither is there a substantial influence of friction. 
The section in between the river bends is too short to account for a full 
dissipation, so that the secondary current still keeps the motion it was given  
 

Figure 4: Upper left frame: geometry with lengthened straight section 
between the first and second meander bend; upper right frame: 
vector plot of the secondary current in section 1; bottom frame: 
vector plots of the secondary current in sections 2 and 3. Primary 
flow direction is into the page. 

 © 2008 WIT PressWIT Transactions on Engineering Sciences, Vol 59,
 www.witpress.com, ISSN 1743-3533 (on-line) 

62  Advances in Fluid Mechanics VII



possible explanation, numerical simulations were performed in which the section 
in between the first and the second meander bend was lengthened to four times 
in the first bend and resists the natural counter-rotation in the following bends. 
The motion does however seem to weaken, as can be seen in Fig. 3. To test this 
the original size, as is displayed in Fig. 4. Also, vector plots are shown of the 
secondary current in cross sections in the three meander bends. It can be seen 
that the secondary current indeed switches direction from a counter-clockwise 
rotation in the first meander bend to a clockwise rotation in the second meander 
bend. The secondary current does not change rotation in the third meander bend, 
but keeps the rotation it had in the second bend. Thus, it can be concluded that 
the short straight sections and the according lack of frictional effects in between 
the meander bends of the experimental and numerical model are responsible for 
the described behavior of the secondary current. The appearance of only one 
rotational cell in the numerical results has two possible explanations: the 
counter-rotational cell near the outer bank does not exist in our specific 
experiments, or the numerical grid is too coarse to capture this weaker current. 
Future measurements should provide more insight into this matter. 

5 Conclusions 

Experimental and numerical models have been developed in order to predict the 
flow in a meandering river. The model represents two wavelengths of a regime 
channel. Results are presented for simulations with fixed cross-sections  and 
steady discharge. The main conclusions are: (1) the numerical model accurately 
predicts the water depth along the channel length and at the outer and inner 
banks of the meander bends, (2) realistic simulations of the streamwise velocities 
are produced experimentally as well as numerically and the numerically 
computed velocities are in good agreement with the experimentally measured 
velocities, (3) streamline visualisation indicates that the numerical model 
captures the motion of the secondary current and that the secondary current does 
not alternate its rotation but maintains the rotation of the first meander bend. In a 
second set of experiments, the PIV measurement technique will be used to gather 
velocity data. This will allow for a more detailed comparison of the streamwise 
velocity patterns, and will enable the visualisation of the secondary current in the 
experimental model and comparison with the output of the numerical model. 
Also, a sediment transport module will be incorporated in the numerical model, 
and experiments with deformable beds will be performed. 
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