
Simulation of flow in two-sided                          
lid-driven square cavities by the                     
lattice Boltzmann method 

D. Arumuga Perumal & A. K. Dass 
Department of Mechanical Engineering,  
Indian Institute of Technology Guwahati, Guwahati 781039, India 

Abstract 

Due to the presence of corner eddies that change in number and pattern, the 
classical one-sided lid-driven cavity problem has been found to be particularly 
suitable to study various aspects of the performance of solution algorithms for 
incompressible viscous flows. More recently, the flow induced by the motion of 
two facing walls (two-sided lid-driven cavity) has also been investigated by 
Kuhlmann et al. For some aspect ratios this study demonstrates the existence of a 
multiplicity of solutions. However, for the aspect ratio of unity no multiplicity of 
solutions has been observed. Also it is found that for parallel motion of the walls, 
there appears a pair of counter-rotating secondary vortices of equal size near the 
centre of a wall. Because of symmetry, this pair of counter-rotating vortices has 
similar shapes and their detailed study as to how they grow with increasing 
Reynolds number has not yet been made. Such a study is attempted in this paper 
through the lattice Boltzmann method (LBM), as the problem has the potential of 
being used for testing various solution methods for incompressible viscous 
flows. The results for the antiparallel motion of the walls are also presented in 
detail. As the problem has not been investigated before, to lend credibility to the 
results they are further compared with those obtained from a finite difference 
method (FDM) code developed for this purpose. 
Keywords: two-sided lid-driven cavity, lattice Boltzmann method, finite 
difference method, D2Q9 model, bounce-back boundary condition. 

1 Introduction 

A number of experimental and numerical studies have been conducted to 
investigate the flow field of a lid-driven cavity flow in recent decades. Ghia et al. 
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[1] have applied a multi-grid strategy and presented solutions for Reynolds 
numbers starting from Re = 100 to as high as Re = 10000. A review on 
computational and also experimental studies on lid-driven cavity flow can be 
found in Shankar and Deshpande [2]. They have studied and analyzed corner 
eddies, nonuniqueness, transition and turbulence in the lid-driven cavity. 
Kuhlmann et al. [3] have done several experiments on a two-sided lid-driven 
cavity with various spanwise aspect ratios. Blohm and Kuhlmann [4] 
experimentally investigated the incompressible fluid flow in a rectangular 
container driven by two facing sidewalls that move steadily in an anti-parallel 
direction up to Reynolds number 1200. 
     Albensoeder et al. [5] were the first to investigate the nonlinear regime and 
found multiple two-dimensional states. They have found seven and five flow 
states in antiparallel and parallel motion respectively. Kalita et al. [6] developed 
an HOC algorithm for Stream-function vorticity formulation of the 2D N-S 
equations on graded Cartesian meshes. They used the algorithm to compute the 
flow in a two-sided 2D lid-driven cavity [7] where, besides wall shear, free shear 
flow is also encountered. 
     Many researchers [9] carried out simulations of one-sided lid-driven cavity 
flow by lattice Boltzmann method. Yong G Lai et al. [10] compared the lattice 
Boltzmann method and the finite volume Navier-Stokes solver and concluded 
that bounce-back boundary condition has better than first order accuracy. The 
present work uses lattice Boltzmann BGK model (LBGK) with single time 
relaxation and bounce-back boundary condition to investigate the flow driven by 
parallel and antiparallel motion of two facing walls in a square cavity for 
Reynolds number up to 2000. A nine-bit square lattice incompressible LB model 
in 2D space has been used in the present work since it is known to give more 
accurate results compared to seven-bit incompressible LB model. 
     The rest of the paper is organized as follows. In Section 2, LBGK with single 
time relaxation and 2D nine-velocity lattice model is defined. The numerical 
procedures for LBM and stream function-vorticity based FDM is also described 
in this section. In Section 3, the two-sided lid-driven cavity problem is described 
and the results from LBM simulation with parallel and antiparallel motion of the 
walls are presented. The results are discussed in Section 4. Based on the results 
obtained concluding remarks are made in Section 5. 

2 Numerical methods 

2.1 Lattice Boltzmann method 

The lattice Boltzmann method represents an alternative possibility for the direct 
simulation of the incompressible flow. It has been shown that the accuracy of the 
lattice Boltzmann method is of second order both in space and time [9]. The 
lattice Boltzmann equation, which can be linked to the Boltzmann equation in 
kinetic theory, is formulated as [8] 

( , ) ( , ) = i i if c t t t f t i+ ∆ + ∆ − Ωx x      (1) 
where ƒi is the particle distribution function,  ci is the particle velocity along the 
ith direction and  Ωi is the collision operator. The so-called lattice BGK model 
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with single time relaxation, which is a commonly used lattice Boltzmann 
method, is given by 

( )1 (0 )( , ) ( , )  =  - ( , ) ( , )i i if c t t t f t f t f ti iτ
+ ∆ + ∆ − −x x x x        (2) 

     Here (0) ( , )f ti x is the equilibrium distribution function at x,t and τ  is the 

time relaxation parameter. 
     The D2Q9 square lattice used here has nine discrete velocities. A square 
lattice with unit spacing is used on each node with eight neighbours connected 
by eight links. Particles residing on a node move to their nearest neighbours 
along these links in unit time step. The occupation of the rest particle is defined 
as ƒ0. The occupation of the particles moving along the axes are defined as ƒ1, ƒ2, 
ƒ3, ƒ4, while the occupation of diagonally moving particles are defined as ƒ5, ƒ6, 
ƒ7, ƒ8. The particle velocities are defined as 

c  = 0,       = 0
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     The macroscopic quantities such as density ρ and momentum density ρu are 
defined as velocity moments of the distribution function ƒi as follows: 

N

i
i = 0

ρ = f ,∑                (4) 
N

i i
i= 0

ρu = f c .∑         (5) 

     The density is determined from the particle distribution function. The density 
and the velocities satisfy the Navier-Stokes equations in the low-Mach number 
limit by using the Chapman-Enskog expansion [8]. In the nine-velocity square 
lattice, a suitable equilibrium distribution function has been proposed [9] with,  
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    (6) 

where the lattice weights are 0 1 2 3 4w  = 4/9,  w  = w  = w  = w  = 1/9  and 

5 6 7 8w  = w  = w  = w  = 1/36.  The relaxation time τ  is related to the viscosity by 
6 1 = 

2
υτ −                        (7) 

where υ  is the kinematic viscosity. It was seen that τ = 0.5 is the critical value 
for ensuring a non-negative kinematic viscosity. Numerical instability can be 
expected for τ  close to this critical value. This situation takes place at high 
Reynolds numbers. In this work Reynolds numbers up to 2000 in a lattice size of 
2572 have been investigated. 
     In LBM several boundary conditions have been proposed [10]. The bounce-
back scheme was used in these simulations to copy the velocity no-slip condition 
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on walls. In this scheme, the particle distribution function at the wall lattice node 
is assigned to be the particle distribution function of its opposite direction. The 
basic argument for the use of ‘on-grid bounce-back model’ is that it is both 
mathematically applicable and quite relevant for LBE simulations of fluid flows 
in simple bounded domains. For this reason, this boundary condition has been 
employed here on the two stationary walls. However for the moving walls, the 
equilibrium boundary condition is applied [9]. At the lattice nodes on the moving 
walls, flow-variables are re-set to their pre-assumed values at the end of every 
streaming-step. A lid-velocity of U = 0.1 has been considered in this work. 

2.1.1 Numerical algorithm 
The velocities at all nodes except those on the moving walls are assumed to be 
zero at the time of starting the simulation. Initially, the equilibrium distribution 
function that corresponds to the flow-variables is assumed as the unknown 
particle distribution function for all nodes at t = 0. Uniform density ρ = 1.0 is 
imposed initially. 
     The solution procedure of the LBM at each time step comprise streaming and 
collision step, application of boundary conditions, calculation of particle 
distribution function followed by calculation of macroscopic variables.  
     The lattice Boltzmann Equation (LBE) is solved in the solution domain 
subjected to the above initial and boundary conditions on a uniform 2D mesh. It 
is seen that the numerical algorithm of the LBM is relatively simpler compared 
with conventional Navier-Stokes methods. Another benefit of the present 
approach is the easiness of programming.  

2.2 Finite difference (FD) stream function-vorticity based solver 

As the LBM method is intended to be used to compute an unexplored problem, 
need was felt to develop a finite difference code to attack the same problem thus 
providing a basis for comparison. The FD code numerically solves the 2D 
Navier-Stokes equation in stream function-vorticity formulation given by 

2 2

2 2+  =  -
x y
ψ ψ ω∂ ∂

∂ ∂
       (8) 

2 2

2 2 +  +  =   + . 
t

1u  v
x y Re x y

ω ω ω ω ω ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 

       (9) 

     In the code all space derivatives are centrally differenced and ADI method is 
used for time integration to the steady state. This code will provide a legitimate 
basis for comparison only after it has been validated and this exercise is 
presented in the next sub-section. 

2.3 Code validation 

The developed FD code is used to compute the single lid-driven flow in a square 
cavity on a 1292 grid. Well established results computed by Ghia et al. [1] exist 
for the same problem on a similar grid and this work is used for validating the 
present FD code. Figure 1 shows the steady-state u-velocity profile along a 
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vertical line passing through the geometric centre of the cavity at Re = 1000. 
Here the top lid moves from left to right and it is observed that the agreement 
between our FD results and those of Ghia et al. [1] is excellent. The same figure 
also displays our LBM results, which again are in excellent agreement with the 
two results described earlier. In the next section the LBM results for the 
unexplored two-sided lid-driven cavity flow will be presented and the credibility 
of these results will be established through comparison with the results of the FD 
code.  

 

Figure 1: u-velocity profile at the vertical centreline for single lid-driven 
square cavity flow (Re = 1000). 

3 Two-sided lid-driven cavity flow 

An incompressible viscous flow in a square cavity whose top and bottom walls 
move in the same (parallel motion) or opposite (antiparallel motion) direction 
with a uniform velocity is the problem investigated in the present paper. In the 
case of parallel wall motion, a free shear layer exists midway between the top 
and bottom walls apart from the wall bounded shear layers whereas in the case of 
antiparallel wall motion, only wall bounded shear layers exist. 

3.1 Parallel wall motion 

LBM results on a lattice size of 257× 257 for the parallel wall motion are shown 
in Figure 2. When both the walls, say, the top and the bottom move in the same 
direction with the same velocity, the streamlines are found to be symmetric with 
respect to a line parallel to these walls and passing through the cavity centre. 
Figure 2(a) shows the streamline pattern for the parallel wall motion at Re = 100 
with the top and bottom walls moving from left to right. Two counter-rotating 
primary vortices symmetric to each other are seen to form with a free shear layer 
in between. At this Reynolds number the primary vortex cores are seen to be 
somewhat away from the centres of the top and bottom halves of the lid-driven 
cavity towards the right-hand top and right-hand bottom corners respectively.  At 
Re = 400 (Figure 2(b)), apart from the primary vortices two counter-rotating 
secondary vortices symmetrically placed about the horizontal centreline are seen 
to appear near the centre of the right wall. Figures 2(c) and 2(d) show the 
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                                       (a) Re = 100                                      (b) Re = 400 

         
                                  (c) Re = 1000                                    (d) Re = 2000  

Figure 2: Streamline pattern for parallel wall motion at (a) Re = 100 (b) Re = 
400 (c) Re = 1000 and (d) Re = 2000 by LBM on a 2572 lattice. 

         
                                     (a) Re = 100                                      (b) Re = 400 

        
                                      (c) Re = 1000                                    (d) Re = 2000 

Figure 3: Streamline pattern for parallel wall motion at (a) Re = 100 (b) Re = 
400 (c) Re = 1000 and (d) Re = 2000 by FDM on a 1292 grid.    
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streamline patterns at Re = 1000 and Re = 2000 respectively. From Figure 2 it is 
observed that as the Reynolds number increases the cores of the primary vortices 
move from near the top right and bottom right corners to the centres of the top 
and bottom halves of the cavity respectively. Also as the Reynolds number 
increases the secondary vortices near the centre of the right wall grow in size. 
The counter-rotating pairs of primary and secondary vortices maintain their 
centro-symmetry for all the Reynolds number investigated in this work. As 
mentioned earlier these results are now substantiated by comparison with the 
results given by the validated FDM code. Figure 3 shows the FDM streamline 
patterns on a 1292 grid for Re = 100, 400, 1000 and 2000 as before. Comparison 
with Figure 2 shows that LBM streamline patterns compare very well with those 
for the FDM. Figure 4(a) shows the comparison for horizontal velocity along the 
vertical centreline of the cavity and Figure 4(b) shows the comparison of vertical 
velocity on a horizontal line at a height of three quarters from the bottom wall. 
Agreement of the velocity profiles given by both methods is again excellent. 
Table 1 gives the locations of the vortices given by LBM and FDM for Re = 100, 
400, 1000, 1500 and 2000. All these results show that the agreement is very good 
thus lending credibility to the results for these unexplored problems.    

      
                                    (a)                                                        (b) 
Figure 4: For parallel wall motion (a) u-velocity along vertical line passing 

through x = 0.50 (b) v-velocity along horizontal line passing 
through y = 0.75.  

3.2 Antiparallel wall motion 

LBM results on a lattice size of 2572 for the antiparallel wall motion are shown 
in Figure 5. When both the walls move in opposite direction with the same 
velocity, top to the right and bottom to the left in this paper, a single primary 
vortex centred at the geometric centre of the cavity is formed (Figures 5(a) and 
5(b)). These two figures show the streamline patterns for Re = 100 and 400 
respectively. Figures 5(c) and 5(d) show the streamline patterns for Re = 1000 
and 2000, which show the appearance of also two secondary vortices near the 
top left and the bottom right corners of the cavity. It may be noted that the 
corresponding vortex for a single lid-driven cavity flow does not appear at a 
Reynolds number as low as 1000 but much later (i.e. at a higher value beyond 
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                                      (a) Re = 100                                (b) Re = 400     

      
                                     (c) Re = 1000                                 (d) Re = 2000 

Figure 5: Streamline pattern for antiparallel wall motion at (a) Re = 100 (b) 
Re = 400 (c) Re = 1000 and (d) Re = 2000 by LBM on a 2572 
lattice. 

         
                                     (a) Re = 100                                     (b) Re = 400 

         
                                     (c) Re = 1000                                  (d) Re = 2000  

Figure 6: Streamline pattern for antiparallel wall motion at (a) Re = 100 (b) 
Re = 400 (c) Re = 1000 and (d) Re = 2000 by FDM on a 1292 
lattice. 
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                                   (a)                                                          (b) 
Figure 7: For antiparallel wall motion (a) u-velocity along vertical line 

passing through x = 0.50 (b) v-velocity along horizontal line 
passing through y = 0.50. 

Table 1:  Locations of the vortices for parallel wall motion: a. FDM, b. 
LBM. 

Primary vortex centres Secondary vortex centres 

Bottom Top Bottom Top Re 

x y x y x y x y 
a. 0.6146 0.2025 0.6146 0.7956 … … … … 

100 
b. 0.6145 0.2024 0.6145 0.7949 … … … … 

a. 0.5844 0.2387 0.5844 0.7552 0.9872 0.4636 0.9872 0.5262 
400 

b. 0.5845 0.2388 0.5845 0.7549 0.9875 0.4713 0.9874 0.5283 

a. 0.5352 0.2453 0.5352 0.755 0.9550 0.4572 0.9550 0.5408 
1000 

b. 0.5314 0.2431 0.5314 0.7556 0.9528 0.4619 0.9528 0.5365 

a. 0.5245 0.2453 0.5267 0.7528 0.9444 0.4572 0.9443 0.5429 
1500 

b. 0.5234 0.2434 0.5234 0.7518 0.9434 0.4569 0.9433 0.5385 

a. 0.5132 0.2474 0.5132 0.7528 0.9400 0.4573 0.9400 0.5478 
2000 

b. 0.5108 0.2489 0.5108 0.7497 0.9378 0.4598 0.9377 0.5389 
 

2000). It has also been observed that primary vortex centre remains at the 
geometric centre of the cavity even for these higher values of Re = 1000 and 
2000. However the size of the secondary vortices are seen to increase between 
Re = 1000 and 2000. Similar increase in size of the secondary vortices with 
Reynolds numbers was also observed for the parallel wall motion. These results 
are now substantiated by comparison with the results of the validated FDM code. 
Figure 6 gives for the same configuration the FDM streamline patterns on a 1292 
grid for Re = 100, 400, 1000 and 2000. Comparisons with Figure 5 shows that 
LBM streamline patterns compare very well with those for the FDM. Figures 
7(a) and 7(b) show the comparison between LBM and FDM for the horizontal 
velocity along the vertical centreline and the vertical velocity along the 
horizontal centreline and the agreement is excellent once again.   
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Table 2:  Locations of the vortices for antiparallel motion: a. FDM, b. LBM. 

Primary Vortex (PV)            Secondary Vortices (SV) 
Bottom Right Top Left 

 
Re x y 

x y x y 
100 a. 0.4999 

b. 0.5002 
0.5001 
0.5001 

… 
… 

… 
… 

… 
… 

 … 
 … 

400 a. 0.5002 
b. 0.5001 

0.4980 
0.4982 

… 
… 

… 
… 

… 
… 

… 
… 

1000 
 

a. 0.5007 
b. 0.5012 

0.4981 
0.4982 

0.9507 
0.9512 

0.1319 
0.1326 

0.0492 
0.0449 

0.8663 
0.8609 

1500 
 

a. 0.5005 
b. 0.5010 

0.4982 
0.4979 

0.9214 
0.9336 

0.1146 
0.1175 

0.0727 
0.0642 

0.8856 
0.8829 

2000 
 

a. 0.5003 
b. 0.5002 

0.5001 
0.4991 

0.9229 
0.9250 

0.1082 
0.1082 

0.0791 
0.0727 

0.8920 
0.8855 

 
     Table 2 gives the locations of the vortices given by LBM and FDM for Re = 
100, 400, 1000, 1500 and 2000. It is seen that LBM results given by the figures 
and the table are in excellent agreement with the FDM results produced through 
the validated code. This lends credibility to the current LBM results for this 
unexplored problem.       
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