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Abstract 

This paper presents an analytical or semi analytical method capable of predicting 
water bidirectional transfers in a soil under different irrigation systems, and 
specifically for micro and furrow irrigation systems. The method developed in 
this article uses the Green’s function to solve Richards’ equation. Some 
assumptions are made that allow the equation to be linearized and thus solved. 
The Green’s function is a well-known method used to solve the partial 
differential equation (PDE) with constant coefficients in simple geometries and 
general boundary conditions. The singularity of the method lies in its approach to 
Richards’ equation in real irrigation contexts as it superposes simple solutions 
which can be treated by Green’s function method. This work has two main aims: 
to propose analytical and explicit forms of water content in the soil, and to treat 
irrigation scenarios (unspecified furrow shapes in the case of furrow irrigation, 
heterogeneous initial conditions, which take into account precipitation events 
and plant uptakes, etc.) in a simple and operational manner. It also allows the 
evaluation of the coefficients of the solute transfers equation which depend on 
soil water content. This equation can then be solved with the same approach 
developed for water transfers. We present here the main principles of the model, 
the first results and improvements that could be made in the future. 
Keywords:  furrow irrigation, analytical method, Green’s function, water and 
solute transfers, bidirectional. 

1 Introduction 

Inadequate irrigation and fertilization practices can have important 
environmental impacts: waste of water, nitrate pollution. Furrow irrigation is one 

Advances in Fluid Mechanics VI  633

doi:10.2495/AFM06062

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



of the most commonly used irrigation system in the world and micro irrigation 
systems installations are on the increase. A better understanding of water and 
nitrate transfers specific to these irrigation systems and fertilization practices 
could reduce water drainage and nitrate leaching. 
     Unidirectional models combining water and solute transfers, soil chemical 
and plant uptake exist and are able to simulate changes occurring in the soil and 
plant state along a whole crop season [2, 6]. The main fertilization practices 
concentrate nitrate in the top layers of the ridge in the context of furrow 
irrigation. Experiments shows that the nitrate distribution in the soil highly 
depends on irrigation practices: impact of the water application depth [7], use of 
an alternative furrow practice, which consists in irrigating every second furrows 
and applying fertilizer in dry furrows [9]. Here, lateral transfers increase due to 
the initial distribution of nitrate and unidirectional modelling isn’t useful when 
predicting the fate of water and nitrate in the soil profile. This observation is all 
the more relevant under environmental contexts where water and nitrate 
application is adjusted to plants’ needs. 
     Some numerical models can be used to predict water and solute bidirectional 
dynamics [12, 14], but require a large set of parameters and significant 
computing time. General analytical solutions concerning water transfers have 
been developed [1, 8], models specialized in drip irrigation have been adapted 
from general methods [3, 15] and other models concerning furrow irrigation 
allow the simulation of cumulative infiltration for a given opportunity time [11, 
16]. But in the context of furrow irrigation, the prediction of nitrate leaching 
requires a better understanding of water and solutes bidirectional transfers’ 
mechanisms. 
     The model developed in this work, predicts soil water transfers, analytically 
or semi analytically, under different irrigation scenarios. In the case of furrow 
irrigation, the resolution of the Richards’ equation poses 4 major problems: the 
significant non-linearity of the Richards’ equation, the complexity of the 
geometry, the mixed boundary conditions on the soil surface and the processing 
of heterogeneous initial conditions. This work proposes methods to solve each of 
these problems. The first section of this article deals with the linearization of the 
equation and its resolution in some theoretical cases. The second section explains 
how these simple solutions are superposed to recompose the initial complex 
problem solution. Lastly, improvements of the model and its adaptation to solute 
transfers, plant uptakes and atmospheric conditions are presented. 

2 Resolution of the transfer equation in theoretical cases 

The theoretical cases treated in this section concern sloped-plot submitted to 
simple initial and boundary conditions. To simplify the further calculations, the 
plot is considered to be horizontal and the gravity force sloped with regard to the 
vertical axis. The domain of resolution is then semi infinite on the vertical 
direction and infinite in the horizontal direction. After the resolution of 
equations, a rotation of the medium produces solutions to the initial theoretical 
problem (see Figure 1). 
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Figure 1: Studied domain transformations. 

2.1 The Richards’ equation 

Water transfers are submitted to Richards’ equation [10]. Considering the 
previous transformation and ω the angle between gravity force and vertical axis, 
this equation can be written 

 ( )[ ] Szxhk t +∂=−−∇∇ θωω )cos()sin(  (1) 

where k is the hydraulic conductivity (cm.h-1), h the pressure head (cm), θ the 
water content (cm3.cm-3), z the vertical coordinate taken positive downward (cm) 
and S a sink or source term, usually the plant uptake (h-1). 
     This equation is highly non-linear and it’s writing has to be simplified to 
allow its resolution using Green’s function. The following three equations allow 
the linearization of Richards’ equation by applying the Kirchhoff transformation 
defined in eqn. (2) and by choosing θ and k relationships suited to the problem, 
respectively linear soil model defined in eqn. (3) and used by Warrick [15] and 
Gardner model [4] defined in eqn. (4). 
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where kS is the saturated hydraulic conductivity (cm.h-1), α the inverse of the 
capillary length (cm-1), θR and θS, the retention and saturated water content 
(cm3.cm-3). φ is the flux potential (cm2.h-1). The resulted linear PDE is then 
submitted to two transformations. First, dimensionless variables are introduced 
and a function change is used. The Richards’ equation become 
 

 ∆Ψ=Ψ∂T  (5) 
 

with the following dimensionless variables 

Domain where Green’s 
function method is applied
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and the following function change 
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the initial condition is 
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In the context of soil water transfers in irrigation, two types of boundary 
conditions are considered. They are also affected by the introduction of 
dimensionless variables and function change. Considering Φ0 and q0 the 
dimensionless charge and flux on the surface, the Dirichlet and Cauchy boundary 
conditions respectively become 
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2.2 The Green’s function method 

Green’s function method gives analytical solutions to PDE with complex 
boundary conditions. It involves multiplying the initial PDE by the Green’s 
function G and integrating the result. The use of Green’s function is fully 
developed by Greenberg [5]. This function G (XS, ZS, TS) is the solution to the 
initial PDE submitted to an infinite pulse at the point (XS, ZS) and time TS as the 
initial condition. Green’s function depends on the type of boundary conditions 
considered in the PDE but is, in both cases, the linear combination of functions 
G1D (X, XS, T, TS) G1D (Z, ZS, T, TS) defined in eqn. (11). 
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Thanks to the Green’s function, the solution of the PDE considered in the eqn. 
(5) can be analytically written 
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where the first integral accounts for the initial condition and the second for the 
boundary condition at the soil surface. 
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Figure 2: Dimensionless flux potential after 4h simulation with a Gaussian  

initial condition. 

 
Figure 3: Dimensionless flux potential after 4h simulation with a constant 

2.3 Some results for theoretical cases 

Green’s function allows the analytical writing of the solution. But explicit 
evaluation of eqn. (12) is only possible in particular configurations. This 
paragraph describes some of these configurations and gives their solutions. 
     Four kinds of elementary solutions are analysed in this section. The first case 
studied is a semi infinite medium with an initial condition Φi (X, Z), where Φi 
(X, Z) is a Gaussian distribution. The boundary condition considered at the 
surface is either no pressure head, or no flux. The initial Gaussian condition is 
well adapted when using Green’s function; the evaluation of the eqn. (12) is 
explicit in the case of Dirichlet boundary conditions and easy to obtain, semi 
analytically, in the case of Cauchy boundary conditions. The second case we 
analysed is a semi infinite medium with a zero initial condition and a constant 
pressure head or flux at the soil surface. The two following plots show the 
evaluations of the eqn. (12) in the case of Dirichlet boundary condition. In Figure 
3, the bold line represents the segment of the surface which is submitted to a 
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constant pressure head. The same type of results can be obtained in the case of 
Cauchy boundary conditions. 
     These elementary problems can be considered as parts of more complex 
global problem just like analytic element method described by Strack [13]. The 
next section gives explanations to link these elementary bricks together in order 
to obtain the global solution of the more complex initial problem. 

3 Recomposition of the complete solution 

3.1 Theory 

The previous section explains how to solve the Richards’ equation in simple 
theoretical cases. Using these results, this section explains how to recompose the 
solution of a more complex problem. Let’s consider the following flow problem 
illustrated on the left side of Figure 4. 
     Figure 4 represents a furrow irrigation event with a given initial water content 
and a given water height in the furrow. In this case, no time variable water height 
is considered. The geometry considered is a half furrow (due to the symmetry of 
the system, a half furrow vertically limited by no lateral flux boundary 
conditions is sufficient to represent the event). The boundary conditions on 
furrow surface depend on the position of the water level. Under this position, the 
boundary conditions are considered as variable pressure head boundary 
conditions, on the other part of the soil surface, the boundary conditions are 
considered to be no flux boundary conditions. The vertical no lateral flux 
boundary conditions are simulated by reproducing the symmetry of the system. 
 

 

Figure 4: 
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     To solve this problem, the shape of the furrow is discretized in segments with 
specified constant boundary conditions and the initial conditions are composed 
of several Gaussians (represented on the right side of Figure 14 by circles of 
different radius standing for different Gaussians amplitudes). The solutions to 
each of these elementary problems are known thanks to the study previously 
explained in this paper. The analytical form of the PDE solution from eqn. (12) 
is rewritten as a sum of these elementary problems. 

 

[ ]

[ ]∑∫ ∫

∑∫ ∫

ΓΨ∂−∂Ψ+

Ψ=Ψ

Γ
Γ

=

∞ ∞

∞−

j
SS

T

nn

i
SSTi

dTdGG

dZdXG

j
j

jj

S

0

00

 (13) 

Where Ψi are the different Gaussian distributions which make up the initial 
conditions and Γj and nj are respectively the different segments composing the 
surface boundary and their normal vectors. 

3.2 The case of micro irrigation 

A first model validation concerns the case of micro irrigation practice. Modelling 
has been done in 2D context, but the transition to axisymmetric or tridirectional 
coordinates can be treated by Green’s function with few modifications. 
Geometry is rectangular and boundary conditions are only Cauchy type: constant 
flux on a segment of the surface and no flux on the other part of the surface. The 
validation has been led by comparison with the numerical model Hydrus-2D [12] 
on an initial homogeneous wet Clay Loam soil (∆θ = θS-θΙ = 0.05 cm3.cm-3) for 
4h irrigation. Results are illustrated in Figure 5. Simulation performed gives 
satisfying results. 
 

 

Figure 5: Comparison between analytical and numerical modelling of water 
content profile under micro irrigation. 
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3.3 The case of furrow irrigation 

Furrow irrigation modelling is more complex than the previous case and the 
reliability of the model is questionable. Validation is also carried out by 
comparing it with the Hydrus-2D numerical model using the same soil 
characteristics as employed previously. Analytical model discretizes the furrow 
as described in the previous section. Simulation performed concerns a 4h furrow 
irrigation event on the homogeneous dryer soil (∆θ = 0.14 cm3.cm-3). Figure 6 
gives the results of this comparison. Due to the linear soil assumption, the 
wetting front decreases from saturated water content to initial water content is 
lower in the simulation performed using the analytical model. The numerical 
modelling takes into account the relationship between soil characteristics and 
moisture conditions, and the wetting front is also governed by this relationship. 
 

 

Figure 6: Comparison between analytical and numerical modelling of water 
content profile under furrow irrigation. 

4 Discussion and complements 

The Green’s function method has been used to provide analytical solutions to the 
Richards’ equation. Some theoretical cases provided an explicit or semi implicit 
evaluation of these analytical solutions and these elementary solutions can be 
linked together to build solutions for a more complex global problem. The 
advantage of this semi analytical model with regards to other analytical models 
is its adaptability. It’s able to simulate heterogeneous initial conditions and takes 
into account complex boundary conditions and geometries. Concerning the 
numerical models, it is more operative and reduces the computing time. No 
notion of CFL (Courant Friedrichs Lewy) condition is introduced (imposed 
relationship between time and space steps for the stability of the numerical 
scheme), the initial conditions are easier to build for given experimental data and 
the number of elementary problems to solve is less than the number of cells 
using in numerical models. 
     However, this work is based on some assumptions that permit the 
linearization of the equations and the application of Green’s function. Some of 
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these assumptions, especially those of linear soil conditions, defined by the eqn. 
(3) can lead to difficulties in representing real water transfers in soil. In micro 
irrigation contexts, soil water content is generally maintained close to field 
capacity and its variation is low. In that case, the linear soil assumption is 
acceptable and its impact on results is low (see Figure 5). In the furrow irrigation 
context, soil moisture variations are higher. This form of irrigation often results 
in higher water application depth, but the irrigations events are less frequent. 
Consequently, the impact of the linear soil assumption is greater as shown in 
Figure 6. 
     On the way of reducing these impacts is proposed by means of an iterative 
process: a run of the analytical model provides an approximation of soil 
characteristics, based on an evaluation of PDE coefficients for a next model 
iteration. Another more mathematical approach to improve the linearization of 
water content model was proposed by Basha [1]. He introduced a perturbation 
solution in the original nonlinear problem. 
     The methods applied in this work can therefore be completed by the 
modelling of other phenomena that occur during a cropping season. For instance, 
the approach developed in this article gives the soil water content profile which 
is necessary for the evaluation of the nitrate transfers equation coefficients. This 
equation can be solved using the same principles as those used for the resolution 
of the Richards’ equation. 
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