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Abstract

In the present paper a model to predict the hydrodynamic permeability of viscous
flow through an array of squares is generalized to include flow through arrays
of rectangles of any aspect ratio. This involves different channel widths in the
streamwise and the transverse flow directions. It is shown how, with the necessary
care taken during description of the interstitial geometry, a volume averaged
approach can be used to obtain results identical to a direct method. Insight into the
physical situation is gained during the modelling of the two-dimensional interstitial
flow processes and resulting pressure distributions and this may prove valuable
when the volume averaging method is applied to more complex three-dimensional
cases. The analytical results show close correspondence to numerical calculations
except in the higher porosity range for which a more realistic model is needed.
Keywords: porous media, volume averaging, hydrodynamic permeability,
rectangles.

1 Introduction

Apart from the spatial dimension of the microstructure, the analytical result
involves two parameters, the first of which relates to the extent of staggeredness
that a fluid particle experiences on its way downstream. The second parameter
introduced is a measure of aspect ratio of the rectangles which will allow us to
vary the length of the transverse channels. In this paper the influence of these two
parameters on the hydrodynamic permeability will be discussed.

2 Direct analytical modelling

Following Firdaouss and Du Plessis [1], the solid phase and the unit cell are
represented by rectangles of the same aspect ratio. This was done to incorporate
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situations where the interstitial velocity in the channels parallel to the streamwise
direction differs from that in the transverse channels, while maintaining notational
simplicity. The fluid-solid interface parallel to the streamwise direction is denoted
by ds‖ and the perpendicular interface by ds⊥. The dimensions of the unit cell
are represented by d‖ and d⊥ in the streamwise and the transverse directions
respectively, as are shown in Figure 1. The width of the channel wherein the
flow is in the streamwise direction is represented by dc⊥ and the width of the
channel occupied by transversely flowing fluid is represented by dc‖. Therefore
dc⊥ = d⊥−ds⊥ and dc‖ = d‖ −ds‖.

n̂
mean

flow

ds‖

ds⊥

d‖

d⊥
dc‖
2

dc⊥
2

Figure 1: Notation for the unit cell with respect to the streamwise (or mean flow)
direction.

The aspect ratio is defined as follows:

α ≡ d⊥
d‖

=
ds⊥
ds‖

=
dc⊥
dc‖

. (1)

The porosity of this porous structure is then given by

ε =
d‖d⊥−ds‖ds⊥

d‖d⊥
= 1−

(
ds⊥
d⊥

)2

, (2)

yielding the following useful relation for the particular geometry:

ds⊥
d⊥

=
√

1− ε. (3)

Two different levels of staggering of the solid phase in the streamwise direction
will be studied, namely a regular array and a fully staggered array as shown in
Figure 2. We define as follows a parameter ξ which relates to the cross-stream
staggeredness of the solid material:

ξ ≡

 0 Regular array

1
2 Fully staggered array .

(4)
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(a)

Regular array

with ε = 0.75.

(b)

Fully staggered array

with ε ≈ 0.27.

n̂

Figure 2: An illustration of the different arrays studied, as well as typical unit cells
chosen for the different cases and the streamwise direction n̂.
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Figure 3: The model considered for a regular configuration where: pUtA = p+δp‖
and pUtB = p.
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Figure 4: The model considered for a fully staggered configuration where: pUtA =
p + 1

2 δp⊥, pUtB = p, pUtC = p− δp‖ and pUtD = p− δp‖− 1
2 δp⊥.

For the derivations of the permeability, the simplistic models shown in Figures
3 and 4 are considered. That sub-volume of a unit cell occupied by fluid flowing
parallel to the net streamwise direction is given by U‖ and U⊥ represents the
volume of the transverse channel. In the transfer volume Ut , the wall shear stresses
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acting on the fluid-solid interfaces are neglected, thus the pressure drop is assumed
zero. It is evident from numerous numerical calculations that the stagnation point
with its large pressure causes less shear stress along those parts of So f lying within
the transfer volumes Ut .

An analytical model for the determination of the hydrodynamic permeability
in the Darcy regime in terms of porosity was developed by Firdaouss and Du
Plessis [1]. Unit cells representing different levels of streamwise staggering
and different dimensions were examined and a general expression for the
dimensionless permeability for these cells was obtained. This analytical model
was based on a piece-wise plane Poiseuille flow approximation for interstitial flow
between neighbouring particles. In their analytical model, however, the pressure
gradient in the transverse channel was taken over the entire ds⊥. In this section an
identical analytical method of Firdaouss and Du Plessis [1], is used to obtain an
expression for the permeability of the model presented in Figures 3 and 4.

The interstitial flow is assumed to be time independent, incompressible,
Newtonian, free of body forces and, since we are interested in hydrodynamic
permeability only, creep flow is assumed. The flow is thus governed by the
interstitial continuity equation

∇·v = 0 (5)

and the interstitial equation for creep flow

∇p = ∇·τ = µ∇2v , (6)

where v is the interstitial velocity defined at each point. In a plane Poiseuille
flow approximation, the wall shear stress and corresponding channel-wise pressure
gradient are respectively given by

τw =
6µw
dc

and ‖−∇p‖ =
12µw
dc2 . (7)

Here w is the average channel velocity and dc the normal distance between the
facing surfaces.

The dimensionless Darcy permeability for the streamwise direction is defined
as

K ≡ k
d‖d⊥

=
µq

d‖d⊥‖∇p‖ =
µq

d⊥δp
, (8)

where d‖d⊥ is the ‘volume’ of the two dimensional unit cell.
For a streamwise regular array, it follows straightforwardly that the pressure

gradient, the total pressure drop and the dimensionless permeability are given by

−∇‖p =
12µw‖
dc2

⊥
=

12µq

d2
⊥(1−√

1− ε)3
, (9)

δp = δp‖ = −∇‖pds‖ (10)
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and

K=
α(1−√

1− ε)3

12
√

1− ε
(11)

respectively, as was also obtained by Firdaouss and Du Plessis [1]. Here ∇‖ is
defined as a scalar operator in the streamwise direction.

2.1 Streamwise staggered array

From flux-conservation it follows for a streamwisely staggered array that

w⊥ = ξw‖
dc⊥
dc‖

= ξαw‖ . (12)

The total pressure drop over the unit cell consists of the pressure drop in the
parallel as well as the transverse channels.

δp = δp‖ + ξδp⊥ (13)

The pressure drop in the parallel channel is given by eqn.(10) whereas the pressure
drop in the transverse channel is given by

δp⊥ = −∇⊥p(2ds⊥−d⊥) (14)

where ∇⊥ is a scalar operator. Whence, from eqns. (1), (9) and (12), eqn. (14)
reduces to

δp⊥ = −ξα4∇‖pds‖

(
2− 1√

1− ε

)
. (15)

From eqns. (10), (13) and (15) it there-upon follows that

δp = −∇‖pds‖ + ξδp⊥ = −∇‖pds‖
[

1 + ξ2α4
(

2− 1√
1− ε

)]
. (16)

Substituting eqns. (16) and (9) into eqn. (8) yields the following dimensionless
permeability:

K =
µq

d⊥δp
=

α(1−√
1− ε)3

12
[√

1− ε+ ξ2α4
(
2
√

1− ε−1
)] . (17)

This result differs from that of Firdaouss and Du Plessis [1] due to the exclusion
of the part of S f s⊥ near the stagnation points from the transfer volume Ut , as
indicated on Figure 4. In this region there exists a wall shear stress as well as a
negative pressure gradient opposite to the interstitial flow direction. There is thus
a net force against the flow direction consisting of the positive pressure gradient
and the wall shear stress. Firdaouss and Du Plessis [1] neglected the change of the
direction of the pressure gradient in their direct model, and thus a much smaller
net force against the interstitial flow direction (namely zero) was considered. In
the derivation of eqn. (17) the wall shear stress as well as the pressure gradient on
that part of S f s⊥ was taken as zero.
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3 Volume averaging and closure of momentum equations

The results obtained in eqn. (17) may also be obtained more indirectly from the
volume averaged transport equation, a method which is also applicable in more
general cases of flow in porous media. The actual interstitial flow velocity field v
can be averaged volumetrically over a Representative Elementary Volume (REV),
Uo, yielding the following phase average velocity q, also known as the superficial
velocity and of which the direction is the mean flow (or streamwise) direction used
in the previous section,

q ≡ 1
Uo

∫ ∫ ∫

Uf

v dU . (18)

Volume averaging of eqns. (5) and (6) over any stationary porous structure, which
has a spatially uniform porosity and an average flow which is time independent,
yields respectively

∇·q = 0 (19)

and, if
∫ ∫

S f s

n〈p〉 f dS is assumed to be zero,

−∇〈p〉 f =
1

Uf

∫ ∫

S f s

np dS− 1
Uf

∫ ∫

S f s

µn ·∇v dS . (20)

Eqn. (20) may now be ‘closed’ for a particular porous medium by the introduction
of a Rectangular Representative Unit Cell (RRUC) within which the surface
integral is evaluated. The notation already established for the unit cell shown in
Figure 1 will also be applicable to the RRUC. From eqn. (20) now follows that

−∇〈p〉 f =
1

Uf

∫ ∫

S f s‖

npw dS+
ds‖

2d‖Uf

∫ ∫

S f s⊥AA

npw dS +
dc‖

d‖Uf

∫ ∫

S f s⊥BB

npw dS

+
ds‖

2d‖Uf

∫ ∫

S f s⊥CC

npw dS +
1

Uf

∫ ∫

So f

np̃w dS

− 1
Uf

∫ ∫

S f s‖

µn ·∇v dS− dc‖
d‖Uf

∫ ∫

S f s⊥BB

µn ·∇v dS
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− ds‖
2d‖Uf

∫ ∫

S f s⊥AA

µn ·∇v dS− ds‖
2d‖Uf

∫ ∫

S f s⊥CC

µn ·∇v dS . (21)

The pressure term was split into the average wall channel pressure and a wall
pressure deviation. The latter term is zero, because, according to the definition of
deviation, the positive and the negative parts of the deviation will cancel out on
each fluid-solid interface. The integral of the average wall channel pressure is then
split into an integral over the fluid-solid interface in the fluid channels parallel
to the streamwise direction and one over the fluid-solid interface in the transverse
fluid channels. The integral over the parallel channel will be zero, since the average
wall channel pressures on the upper and the lower surfaces will be equal and thus
cancel vectorially. The integral over the transverse channels is then split into three
integrals which are weighed according to their relative frequency of occurrence
if the RRUC is shifted in the streamwise direction. The S f s⊥BB term corresponds
to the instances when the boundaries of the RRUC are situated in the transverse
fluid channels. The S f s⊥AA term and the S f s⊥CC term correspond to the instances
when the transverse boundaries of the RRUC intercept the second half of the solid
phase and the first half of the solid phase, respectively. These different RRUC
orientations are shown in Figure 5.

ds‖
2

ds‖
2

AA

dc‖dc‖

B B

ds‖
2

ds‖
2

CC
n̂

Figure 5: The shifting method of the RRUC for a fully-staggered configuration.

The shear stress integral is split in a similar manner as the pressure term. The
magnitude of the wall shear stress on each fluid-solid interface in the transverse
channels is equal. The S f s⊥AA, S f s⊥BB and S f s⊥CC terms should thus be zero since
the wall shear stresses on their two surfaces will cancel vectorially. If the solid
phase was not fully staggered in the streamwise direction and the length of the
transverse channel, where the interstitial flow direction is ň, differs from the length
of the transverse channel wherein the flow is in the −ň direction, (with ň× n̂ = 0)
the integrals over S f s⊥AA and S f s⊥CC will not be zero respectively. If an REV
is considered, there should only exist a pressure drop in the mean streamwise
direction n̂, and the net pressure drop in the direction perpendicular to n̂ should
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be zero. The net force acting on the fluid in a particular channel is zero if piece-
wise straight streamlines (as illustrated in Figure 5) are assumed. The magnitude
of the wall shear stress times the surface area it is acting on should be equal to
the magnitude of the pressure drop in that channel times its cross-sectional area.
Since the net pressure drop in the transverse direction is zero, the net wall shear
stress on the surfaces of those channels should also be zero. The RRUC should
be a representative unit cell and therefore it is expected that, in eqn. (20), the part
of the integral of the shear stress term which is taken over S f s⊥ should be zero.
Since S f s⊥BB is zero for all levels of streamwise staggering, the net effect of the
integrals taken over S f s⊥AA and S f s⊥CC should also be zero. The wall shear stresses
on the surfaces of S f s⊥AA will cancel vectorially with the wall shear stresses on the
surfaces of S f s⊥CC, if the two terms are weighed equally.

The underlined terms in eqn. (21) is zero. This equation thus reduces to

−∇〈p〉 f=
ds‖

2d‖Uf

∫ ∫

S f s⊥AA

npw dS +
dc‖

d‖Uf

∫ ∫

S f s⊥BB

npw dS

+
ds‖

2d‖Uf

∫ ∫

S f s⊥CC

npw dS− 1
Uf

∫ ∫

S f s‖

µn ·∇ ṽ dS

and substitutions according to the geometric assumptions yield:

−∇〈p〉 f=ξδp⊥
[

dc‖d⊥ + ds‖dc⊥
d‖Uf

]
+ δp‖

[
ds⊥dc‖
d‖Uf

]
+

τ‖S‖
Uf

(22)

=
[ξδp⊥ + δp‖

d‖

]
, (23)

which exactly corresponds with eqn. (13), used in the derivation of the
dimensionless permeability with the direct method. The gradient of the intrinsic
phase average of the pressure can also be written in terms of the shear stresses in
the parallel and the transverse channels. It then follows from eqn. (22) that

−∇ 〈p〉 f=
1

d‖dc⊥

[
τ‖S‖ + αξτ⊥S⊥

]
n̂ , (24)

where τ⊥S⊥ = δp⊥dc‖ and S⊥ = 2(ds⊥−dc⊥).
It is assumed that plane Poiseuille flow is a good approximation for the

interstitial flow in the channels between the solid particles for this two dimensional
case study. We thus have the following expressions for the shear forces in the
transverse and the streamwise channels respectively:

τ⊥S⊥ =
6µw⊥
dc‖

(4ds⊥−2d⊥) and τ‖S‖ =
6µw‖
dc⊥

(2ds‖) . (25)
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The interstitial velocity relation is given by

w⊥
w‖

= ξα . (26)

From eqn. (24) it then follows that

−∇〈p〉 f =
12µqd⊥
dc3

⊥d‖

[
ds‖ + α4ξ2(2ds‖ −d‖)

]
n̂ . (27)

From the definition of the dimensionless Darcy permeability for the streamwise
direction it there-upon follows that

K ≡ µq

Uo

∥∥∥∇ 〈p〉 f

∥∥∥=
dc3

⊥d‖
12d2

⊥d‖
[
ds‖ + α4ξ2(2ds‖ −d‖)

] . (28)

After substitutions, this expression, obtained by means of volume averaging, is
identical to expression (17) where the permeability was obtained directly without
involving volume averaging.

4 Discussion

Eqn. (24) corresponds to the following equation obtained by Lloyd et al. [3] (their
equation (15)),

−∇〈p〉o =
Uf

U‖ +Ut
· τ‖S‖ + ξτ⊥S⊥

Uo
, (29)

where squares rather than rectangles were considered and the aspect ratio, α, was
thus set equal to 1. Note that S⊥ in eqn. (29) is 2dc⊥ larger than S⊥ in eqn. (24)
due to the assumption of the present model.

In a staggered configuration the dimensionless permeability obtained is defined
only for porosities up to the point ds⊥ = dc⊥ where subsequent rectangles cease
to overlap. Note that the denominator of eqn. (17) is zero or negative if

ε ≥ (3α4ξ2 + 1)(α4ξ2 + 1)
(2α4ξ2 + 1)2 , (30)

where the lower bound of the RHS of eqn. (30) is 0.75 when α tends to infinity.
In the following example expression (17) is compared with the numerical results

obtained by Firdaouss and Du Plessis [1] as well as their analytical results (which
is identical to the analytical results obtained by Lloyd et al. [3] if α = 1). In this
example, the aspect ratio is 4 and thus the tortuosity in the streamwise direction is

χ =
Le

L
= 1 + ξα

√
1− ε = 1 + 2

√
1− ε. (31)
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Figure 6: Streamwise staggered array with α = 4.

5 Conclusions

A new pore-scale model was introduced to predict the hydrodynamic permeability
of low porosity configurations of rectangles. The results closely correlate with
numerical computations reported in literature. Important outcomes of this study
are the identical results obtained by the direct approach and by the volumetric
averaging coupled with closure by a pore-scale model, even in the case of high
aspect ratio solid parts and high tortuosities.
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