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Abstract 

An exact solution of the Navier-Stokes equations for laminar flow inside porous 
pipes simulating variable suction and injection of blood flows is proposed in the 
present article. To solve these equations analytically, it is assumed that the effect 
of the body force by mass transfer phenomena is the ‘porosity’ of the porous 
pipe in which the fluid moves. The resultant of the forces in the pores can be 
expressed as filtration resistance. The developed solutions are of general 
application and can be applied to any swirling flow in porous pipes. 
     The effect of porous boundaries on steady laminar flow as well as on species 
concentration profiles has been considered for several different shapes and 
systems. In certain physical and physiological processes filtration and mass 
transfer occurs as a fluid flows through a permeable tube. The velocity and 
pressure fields in these situations differ from simple Poiseuille flow in an 
impermeable tube since the fluid in contact with the wall has a normal velocity 
component. In the new flow model, a variation of the solutions with Bessel 
functions based on Terrill’s theoretical flow model is adopted.  
Keywords: exact solution, Navier-Stokes equations, pipe flow, laminar flow, 
porous media, blood flow characteristics. 
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1 Introduction 

Swirl particulate flows can be found in nature and have significant industrial 
applications including infiltration, blood flow and particle separation. The 
present study was inspired by the need to model swirl flows in such systems with 
the goal of developing tools for study, design and improvement of the porous 
and filtration process in mass fraction systems. Computation of such fields is 
very challenging being further complicated by each porous character and the 
possibility of laminar regimes.  
     One of the approaches to model these porous flows is based on solution of the 
full Navier-Stokes equations. The effect of porous boundaries on steady laminar 
flow as well as on species concentration profiles has been considered for several 
different shapes and systems [1–5]. In certain physical and physiological 
processes filtration and mass transfer occurs as a fluid flows through a permeable 
tube [6, 7]. The velocity and pressure fields in these situations differ from simple 
Poiseuille flow in an impermeable tube since the fluid in contact with the wall 
has a normal velocity component. Therefore, in processes where a combined free 
and porous flow occurs under the aforementioned conditions, the flow regime 
can be naturally modelled by coupling Darcy’s law and the Navier-Stokes 
equations. Moreover, many factors such as the Reynolds number and transport 
properties of the porous media directly affect the dynamics of the flow. The 
diversity of underlying phenomena and the complexity of interactions between 
free and porous flow systems have prevented development of a general 
theoretical analysis of coupled flow systems. In most cases the Navier-Stokes 
equations are reduced to ordinary non-linear differential equations of third order 
for which approximate solutions are obtained by a mixture of analytical and 
numerical methods [8–10]. 
     In this study, an exact solution of the Navier-Stokes equations is proposed 
describing the flow in a porous pipe allowing the suction or injection at the wall 
to vary with axial distance. In the current research work, a new exact solution of 
Terill proposed phenomenology [11] is presented similar to the model of blood 
floe through a porous pipe with variable injection and suction at the walls. In the 
new flows model a variation of the solutions with Bessel functions based on 
Terrill's theoretical flow models is adopted. This study uses biomechanical 
procedures to find exact solutions of the Navier-Stokes equations, governing 
steady porous pipe flows of a viscous incompressible fluid in a three-
dimensional case including body force term.  

2 Mathematical and physical modelling 

The mathematical model simulates the capillary between an arteriole and a 
venule as a horizontal tube of constant cross-section and inner radius R with a 
permeable wall of thickness δ . 
     Assuming the flow of a Newtonian fluid through the pipe, the basic equations 
that describe the mechanics of blood flow in cardiovascular circulation vessels 
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are the mass conservation equation and the equations of motion (Navier-Stokes), 
in a cylindrical system of coordinates ( ), ,r zθ  where the z -axis lies along the 
centre of the pipe, r  is the radial distance and θ  is the peripheral angle. A 
schematic diagram of the model and coordinate system is given in figure 1.  
 

 
Figure 1: Representation of flow in a tubular membrane with a cylindrical 

coordinate system. 

2.1 The Navier-Stokes equations 

Starting from the solutions form suggested by Terrill [11] and taking into 
account body force phenomena, the following solution is proposed. It is 
considered that in the porous space of the pipe, mass transfer phenomena appear 
the body force of that is equivalent to the radial pressure gradient. Moreover, 
when porous spaces exist a new term is added to the radial pressure gradient 
which is involved in the first of the wavier-Stokes equations while the following 
simplified assumptions are made:  

a) axial symmetry  
b) the fluid is homogeneous and behaves as a Newtonian fluid  
c) the pipe is considered of finite length and before the fluid enters the 
porous pipe its profile has already been developed  
d) the permeable membrane is treated as a `fluid medium'. 

The continuity equation in c cylindrical system of coordinates is: 
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The Navier-Stokes equations for the case of the steady axi-symmetric motion of 
an incompressible fluid in a porous horizontal pipe are: 
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The θ-direction of the momentum equation: 
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The z-direction of the momentum equation: 
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2.2 The porous wall equations 

Introducing the dimensionless porosity parameter ξ as follows: 
 

V k
A
δ

δ

ρ
ξ

δ µ
⋅ ⋅

=
⋅ ⋅

     (5) 

 
where δA is the membrane area, k is the permeability coefficient, δV  is the 

volumetric flow rate through the porous space and δ is the thickness of the 
interstitium.  
     The porous wall is supposed to be homogenous and isotropic in which the 
main characteristic is intrinsic permeability k . The flow through the porous wall 
can be simply taken into account as a boundary condition of the flow through the 
tube at the permeable wall.  
     At the permeable wall, the wall suction velocity is given by Darcy’s law as a 
‘fluid-tissue’ system : 
 

r
k Pu

rµ
∂ = −  ∂ 

     (6) 

 

2.3 Dimensionless form of the equations 

The above equations are non-dimensionalised by the following transformation: 
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Taking into account the above assumptions, the continuity equation is written 
using the dimensionless quantities as:  
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Defining the Reynolds number as: 
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the system of the Navier-Stokes equations takes the non-dimensional form: 
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3 Solution strategy 

Extending the procedure of Terrill [11], the axial velocity zu , the radial velocity 

ru  and the tangential velocity θu , are expressed in terms of two functions: 
 

( )0
bz

zu J rb e−=   

                                                
( )1

bz
ru J rb e−=  (13)

                                             
( )1

bzu J rb eθ ξ −= ⋅   
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where ( )0J rb  and  ( )1J rb  are the Bessel functions of the First kind and b is the 
zero of 
 

  ( )( )0 0 0J J b =  (14)

   
 ( ) ( )0 1J rb b J rb= − ⋅  (15)

and 
( ) ( ) ( )1'

1 0
J rb

J rb b J rb
r

= ⋅ −  
(16)

 
The functions ( )0J rb  and ( )1J rb  are shown in figure 2 in terms of r b⋅ . 

BESSEL FUNCTIONS OF THE FIRST AND SECOND KIND
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Figure 2: Bessel functions of the first kind. 

The following boundary conditions are satisfied:  
 

a. The no-slip condition at the tube wall: 
 

0zu =   at   1r =     (17) 
 
b. The suction (b>0) or injection (b<0) condition at the pipe axis: 

 
0ru =   at   0r =     (18) 

 
It is assumed that the speed of suction or injection has a finite value at the walls. 
 

c. The swirl condition at the pipe axis: 
 

0uθ =   at   0r =     (19) 
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     Introducing the three velocity components – as expressed in terms of the 
Bessel functions – in the Navier-Stokes equations, it gives: 
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Integration of the last equation with respect to z gives:  

( ) ( ){ } ( ) ( )2 2 2
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Differentiating the above equation with respect to r and combining the equations 
(20) and (21) it is finally found: 
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Thus the required solution of the present model is: 
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Figure 3: Axial velocity through the pipe at a given axial distance z as a 

function of the radius of the pipe. 

Advances in Fluid Mechanics VI  589

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



     In figure 3 the comparison between the axial velocity predicted by the present 
model (continuous line) and the couple stress theory of Terill (dashed line) can 
be seen. A very good comparison overall can be observed. 
     Figure 4 shows the predicted tangential velocity profiles at a given axial 
distance with respect to the radius of the pipe. It can be seen that at the center of 
the pipe the swirl is zero – as imposed by the boundary conditions – and as 
approaching the wall boundaries it is increasing. 
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Figure 4: Tangential velocity through the pipe at a given axial distance z as a 

function of the radius of the pipe. 
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Figure 5: Tangential velocity through the pipe at a given axial distance z as a 
function of the radius of the pipe. 

     Figure 5 shows the predicted radial velocity distribution with respect of the 
pipe radius. At the pipe centre the radial velocity is zero and it increases rapidly 
up to / 0.8r R = . Then the wall porosity causes a deceleration due to the 
resistance of the fluid through the wall boundary. 
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4 Conclusions 

In this work, a new exact solution of the Navier-Stokes equations is proposed, 
describing the characteristics of three-dimensional axi-symmetric pipe flows 
with variable suction and injection at the porous pipe walls. with application to 
blood flow. In figure 3 the axial velocity distribution across the pipe has been 
plotted concerning both the theory of Pal et al. [3] and the presented concept of 
the exact solution blood flow model with porous wall. The pressure and the 
pressure gradient are dependent on the radial coordinate r  in the porous tube. 
Body force mechanisms in biological membranes are included because of their 
importance for mass transport. The body force mechanisms which represent here 
the volume flow rate in the porous space are strongly connected with the angular 
velocity (twist of the internal particles). The developed solutions are of general 
application [6, 7] and can be applied to any swirling flow in porous pipes. 
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