
Exact statistical theory of isotropic turbulence  

Z. Ran 
Shanghai Institute of Applied Mathematics and Mechanics, 
People’s Republic of China 

Abstract 

The starting point for this paper lies in the results obtained by Sedov (1944) for 
isotropic turbulence with the self-preserving hypothesis. A careful consideration 
of the mathematical structure of the Karman-Howarth equation leads to an exact 
analysis of all possible cases and to all admissible solutions of the problem. This 
kind of appropriate manipulation escaped the attention of a number of scientists 
who developed the theory of turbulence and processed the experimental data for 
a long time. This paper revisits this interesting problem from a new point of 
view. Firstly, a new complete set of solutions are obtained, and Sedov’s solution 
is one special case of this set of solutions. Based on these exact solutions, some 
physically significant consequences of recent advances in the theory of self-
preserved homogenous statistical solution of the Navier-Stokes equations are 
presented. New results could be obtained for the analysis on turbulence features, 
such as the scaling behaviour, the energy spectra, and also the large scale 
dynamics.  
Keywords:  isotropic turbulence, Karman-Howarth equation, exact solution. 

1 Introduction 

Homogeneous isotropic turbulence is a kind of idealization for real turbulent 
motion, under the assumption that the motion is governed by a statistical law 
invariant for arbitrary translation (homogeneity), rotation or reflection (isotropy) 
of the coordinate system. This idealization was first introduced by Taylor [29] 
and used to reduce the formidable complexity of statistical expression of 
turbulence and thus made the subject feasible for theoretical treatment. Up to 
now, a large amount of theoretical work has been devoted to this rather restricted 
kind of turbulence. However, turbulence observed either in nature or in 
laboratory has much more complicated structure. Although remarkable progress 
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has been achieved so far in discovering various characteristics of turbulence, our 
understanding of the fundamental mechanism of turbulence is still partial and 
unsatisfactory (Tatsumi [19]). 

The assumption of similarity and self-preservation, which permits an 
analytical determination of the energy decay in isotropic turbulence, has played 
an important role in the development of turbulence theory for more than half a 
century. In the traditional approach to search for similarity solutions for 
turbulence, the existence of a single length and velocity scale has been assumed, 
and then the conditions for the appearance of such solutions have been 
examined. Excellent contributions had been made to this direction by von 
Karman and Howarth [8], who firstly deduced the basic equation and presented a 
particular set of its solutions for the final decaying turbulence. Later on, two 
Russian scholars, Loitsiansky [30] and Millionshtchikov [12], separately 
obtained the solutions for the Karman-Howarth equation after the term related to 
the effect of the triple velocity correlation has been neglected. Their work was an 
extension of the “small Reynolds number” solution first given by von Karman 
and Howarth.  Dryden [5] gave a comprehensive review on this subject. Detailed 
research on the solutions of the Karman-Howarth equation was conducted by 
Sedov [16], who showed that one could use the separability constraint to obtain 
the analytical solution of the Karman-Howarth equation. Sedov’s solution could 
be expressed in terms of the confluent hypergeometric function. Batchelor [2] 
readdressed this problem under the assumption that the Loitsiansky integral is a 
dynamic invariant, which was a widely accepted assumption, but was later found 
to be invalid. Batchelor concluded that the only complete self-preserving 
solution which was intrinsically consistent existed at low turbulence Reynolds 
number, for which the turbulent kinetic energy is accordant with the final period 
of turbulent decay. Batchelor [2] also found a self-preserving solution to the 
Karman-Howarth equation in the limit of infinite Reynolds number, for which 
the Loitsiansky integral is an invariant. Objections were later raised against using 
the Loitsiansky integral as a dynamic invariant. In fact, at high Reynolds number 
this integral can be proved to be a weak function of time (see Proudman and 
Reid [15] and Batchelor and Proudman [4]). Saffman [15] proposed an 
alternative dynamic invariant which yielded another power-law decay in the limit 
of infinite Reynolds number (see Hinze [7]). While the results of Batchelor and 
Saffman formally constitute complete self-preserving solutions to the inviscid 
Karman-Howarth equation, it must be kept in mind that they only exhibit partial 
self-preservation with respect to the full viscous equation. Later on, George [6] 
revived this issue concerning the existence of complete self-preserving solutions 
in isotropic turbulence. In an interesting paper he claimed to find a complete self-
preserving solution, valid for all Reynolds numbers. George’s analysis was based 
on the dynamic equation for the energy spectrum rather than on the Karman-
Howarth equation. Strictly speaking, the solution presented by George was an 
alternative self-preserving solution to the equations of Karman-Howarth and 
Batchelor since George relaxed the constraint that the triple longitudinal velocity 
correlation is self-similar in the classical sense. Speziale and Bernard [17] 
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reexamined this issue from a basic theoretical and computational standpoint. 
Several interesting conclusions have been drawn from their analysis. 

From the development of turbulence theory, we know that the research on 
decaying homogeneous isotropic turbulence is one of the most important and 
extensively explored topics. Despite all the efforts, a general theory describing 
the decay of turbulence based on the first principles has not yet been developed 
(Skrbek and Stalp [31]). It seems that the theory of self-preservation in 
homogeneous turbulence has lots of interesting features which have not yet been 
fully understood and are worth of further study (see Speziale and Bernard [17] 
p.665).This paper offers a unified investigation of isotropic turbulence, based on 
the exact solutions of the Karman-Howarth equation. Firstly, we will point out 
that new complete solution set may exist if we adopt the Sedov method [16]. 
Hence, some new results could be obtained for revealing the features of 
turbulence, such as the scaling behavior, energy spectra, and large-scale 
dynamics.  

2 Self-preservation solution under Sedov’s separability 
constraint 

For complete self-preserving isotropic turbulence, the Karman-Howarth equation  
will have a solution if Reynolds number based on the Taylor microscale is 
constant as first noticed by Dryden [5]. However, this equation also has solutions 
where Reynolds number based on the Taylor microscale is time dependents 
when separability is invoked. The separability condition implies that each side of 
the equation is equal to zero individually, yielding differential equations from 
which explicit solution for the correlation functions may be determined 
depending on the choice of parameters. These solutions were first discovered by 
Sedov [16] and later compared with experimental data by Korneyev and Sedov 
[9]. Here, we will discuss the possible new complete solutions under Sedov’s 
separability constraint. 
The two-point double longitudinal velocity correlations read as (named Sedov 
equation) 

2
1 2

2
4 0

2 2
a ad f df f

dd
ξ

ξ ξξ
 

+ + + = 
 

                              (1) 

with boundary conditions ( )0 1f = , ( ) 0f ∞ = . 
In the following analysis, we introduce alternative two parameters denoted by 

1,a σ ，  
here 

2

12
a
a

σ =                                                        (2) 

 
The complete new set of the solution of the equation (1) with the boundary 
condition could be given as follows: 
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The first kind of solution： if 5
2

σ = ， then 

( )
21

4
a

f e
ξ

ξ
−

=                                                    (3) 

The secondary kind of solution： if 5
4

κ σ= − ， then 

( )
21

214 5 5, ,
2 2 4

a af e F
ξ

ξ σ ξ
−  = − 

 
                                      (4) 

The third kind of solution： if 5
4

κ σ= − ， then 

( )
21

214 5, ,
2 4

a af e F
ξ

ξ σ ξ
−  =  

 
                                      (5) 

The fourth kind of solution： if 5
4

σ = ， then 

( )
21

214 3 3, ,
4 2 4

a af e F
ξ

ξ ξ
−  =  

 
                                      (6) 

where ( ), ,F zα γ is the confluent hypergeometric function and the definition of 
the existing parameterκ  will be given in the Appendix. From the asymptotic 
expansions and the limiting forms of the confluent hypergeometric function, we 
could deduce the existence conditions of these solutions：  
For all four kind of solutions： 1 0,a >  
For the secondary kind of soultions： 0σ > ；  

For the third kind of solution： 50
2

σ< < ；  

The details could be seen in the Appendix 1. A simple comparison shows that the 
special solution found by Sedov [16] belongs to one kind of our new set of 
solutions.  

3 Some theoretical results based on the exact solutions  

A unified investigation of isotropic turbulence, based on the above exact 
solutions of Karman-Howarth equation could be given. New results could be 
obtained for the analysis on turbulence features, such as the scaling behaviour, 
the spectrum, and also the large scale dynamics, some results could be seen in 
the following references [22–25] . 
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Appendix: Solutions of the correlation coefficients 

The ideas of similarity and self-preservation were firstly introduced by von 
Karman and Howarth [8]. In the light of the methods adopted by Sedov [16,32], 
the two-point double longitudinal velocity correlations satisfies 

2
1 2

2
4 0

2 2
a ad f df f

dd
ξ

ξ ξξ
 

+ + + = 
 

                      (a.1.1) 

with the boundary conditions 
( )0 1f =  

( ) 0f ∞ =  
The complete solutions are given in this paper, which are 

For 5
2

σ = ， ( )
21

4
a

f e
ξ

ξ
−

=  

For 5
4

κ σ= − ， ( )
21

214 5 5, ,
2 2 4

a af e F
ξ

ξ σ ξ
−  = − 

 
 

For 5
4

κ σ= − ， ( )
21

214 5, ,
2 4

a af e F
ξ

ξ σ ξ
−  =  

 
 

For 5
4

σ = ， ( )
21

214 3 3, ,
4 2 4

a af e F
ξ

ξ ξ
−  =  

 
 

The detailed calculation is given as follows: 
     A lot of useful partial differential equations can be reduced to confluent 
hypergeometric equations, ( )ςκ mP , is the solution of the Whittaker equation 
defined by Whittaker and Waston [26] 

2 2

2 2
1 1 4 0
4

d W m W
d

κ
ςς ς

 −
+ − + + = 
  

                   (a.1.2) 

where 

( ) ( ) ( )( ),
f z

my z z e P h zβ
κ=                           (a.1.3) 

After some reduction, the equation of ( )zy  reads 

( ) ( )
2

2
2 2 0d y h dyf z g y z

h z dzdz
β′′ ′− + + + ⋅ = ′ 

                (a.1.4) 

where 

( ) ( )2
12

1
2 f hg f f f g

z h zz
β β ββ

+′ ′′  ′ ′′ ′= − + + + + + ′  
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2 2
2

1
1
4 4

h hg m h
h

κ
 ′ = − + −       

 

The solutions of above equation could be deduced in terms of the Whittaker 
function. 
     We discussed this equation in the following special case: 
 

( )f z azλ=                                               (a.1.5) 

( )h z Azλ=                                               (a.1.6) 
The equation under this condition reads 
 

( )
2

1
2

1 2 2 0d y dyz qy z
z dzdz

λλ β λα −− − + − + =  
              (a.1.7) 

where 

( )
( ) ( )2 22

2 2 2 2 2
2

1 4
2

4

mAq z A z
z

λ λ
β β λ λ

λ α λ αβ κλ− −
+ + − 

= − + + +  
 

 

The solution of this equation is 

( ) ( ),
z

my z z e P Az
λβ α λ

κ=                             (a.1.8) 

For isotropic turbulence, the corresponding parameters satisfiy 
 

1 2 4λ β− − =                                           (a.1.9) 
1 1λ − =                                              (a.1.10) 

12
2
a

λα− =                                            (a.1.11) 

2
2 2 0

4
Aλ α

 
− =  

 
                                    (a.1.12) 

( ) 2 21 0
4

mβ β λ λ  + + − = 
 

                         (a.1.13) 

( ) 22
2
aAλ αβ κλ+ =                                    (a.1.14) 

Hence, we have 
2λ =                                                 (a.1.15) 

1

8
a

α = −                                              (a.1.16) 

5
2

β = −                                               (a.1.17) 

3
4

m = ±                                              (a.1.18) 
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1

4
aA = ±                                          (a.1.19) 

2

1

5
2 4
a
a

κ
 

= ± − 
 

                                      (a.1.20) 

From the above analysis, we can introduce two parameters for classifying 

turbulence, which are: 2
1

1
,

2
aa
a

σ = . 

According to Whittaker and Waston [26], if 2m  is not an integer, then 

( )
1

2 2
,

1 ,1 2 ,
2

z m
mP z e z F m m zκ κ

− +  = + − + 
 

                (a.1.21) 

( )
1

2 2
,

1 ,1 2 ,
2

z m
mP z e z F m m zκ κ

− −

−
 = − − − 
 

               (a.1.22) 

For the case 0κ = ，we must use the second Kummer formula, 

( )
1 2
2

0, 0 1 1 ;
16

m
m

zP z z F m
+  

= +  
 

                     (a.1.23) 

By making use of the boundary conditions, we could choose the rational 
parameters for isotropic turbulence. The solution of equation could be rewritten 
as  

( ) ( )

( )
2

2

,

1
2 2

1
22 2

1 ,1 2 ,
2

1 ,1 2 ,
2

z
m

A z mz

A zm m

y z z e P Az

z e e Az F m m Az

A e z F m m Az

λ

λ

β α λ
κ

β α λ λ

λα β λ λ

κ

κ

− +

 −+ + + 
 

=

 = ⋅ + − + 
 

 = ⋅ ⋅ + − + 
 

          (a.1.24) 

Let 0A > ， then this results in the definition of exponent. 

If we chose 3
4

m = −  in the above solution, the exponent of z is 

2
5 32 1
2 4
3 0

m λβ λ+ +

 = − + × − + 
 

= − <

                             (a.1.25) 

The boundary condition ( )0y  would not be satisfied in this situation. So we only 
chose 

3
4

m =                                              (a.1.26) 

Another condition must be satisfied: 
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0
2
Aα + =                                         (a.1.27) 

The solution is  

( )
2

5
24 5 5, ,

4 2
Azy z A e F Azκ−  = ⋅ ⋅ − 

 
                 (a.1.28) 

There is an important parameter κ in the above solution, and the multiple values 
could exist：  
 

As 2

1

5
2 4
a
a

κ
 

= − 
 

，  

( )
2

5
24 5 5, ,

2 2
Azy z A e F Azσ−  = ⋅ ⋅ − 

 
                 (a.1.29) 

as 2

1

5
2 4
a
a

κ
 

= − − 
 

，  

( )
2

5
24 5, ,

2
Azy z A e F Azσ−  = ⋅ ⋅  

 
                        (a.1.30) 

We must treat the other special case 0κ = ，by using the second Kummer 
formula 

( )
1 2
2

0, 0 1 1 ;
16

m
m

zP z z F m
+  

= +  
 

                           (a.1.31) 

where 

( )
2

2
0 1 1 ; , 2 ,

16

zzF m e F m m z
− 

+ =  
 

 

For this case, the solution of equation is 

( )
2

5
24 3 3, ,

4 2
Azy z A e F Az−  = ⋅ ⋅  

 
                          (a.1.32) 

For another reduced case for 5
2

σ = ， the solution is 

( )
21

4
a

f e
ξ

ξ
−

=                                             (a.1.33) 
Finally, we have already obtained a complete set solution of isotropic turbulence, 
depending on two parameters, which are 

As 5
2

σ = ， ( )
21

4
a

f e
ξ

ξ
−

=  

 

As 5
4

κ σ= − ， ( )
21

214 5 5, ,
2 2 4

a af e F
ξ

ξ σ ξ
−  = − 

 
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As 5
4

κ σ= − ， ( )
21

214 5, ,
2 4

a af e F
ξ

ξ σ ξ
−  =  

 
 

If 5
4

σ = ， then ( )
21

214 3 3, ,
4 2 4

a af e F
ξ

ξ ξ
−  =  

 
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