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Abstract

Considered in this study is the gravity driven flow of a two-fluid system arising
from the motion of a heavy fluid in a rectangular channel having a flat bottom.
The mathematical model is based on shallow-water theory in connection with a
two-layer Boussinesq fluid. By means of a scaling argument, it can be shown that
for small density differences the gravity current can be successfully modelled by
a two-by-two hyperbolic system in conservation form together with a pair of alge-
braic relations. This reduced system is referred to as the weak stratification model.
A weakly nonlinear analysis is performed on this weak stratification model to elicit
information concerning the formation of a rear shock which may form on the back
side of the head of the gravity current. Predictions made by the analytical tech-
nique are then verified by numerical simulations.
Keywords: shallow-water theory, Boussinesq approximation, two-layer model,
hyperbolic system, multiple scales analysis.

1 Introduction

A gravity current refers to the flow of one fluid within another which is driven by
the density difference between these two fluids. Gravity currents play an important
role in many known natural phenomena as well as human-related activities ranging
from turbidity currents to the accidental release of industrial pollutants.

Although it is obviously the case that the initial flow following the release of
a gravity current of finite volume is a complex three-dimensional unsteady flow,
soon after release the current will have spread sufficiently that its length is very
much greater than its thickness. The thickness h(x, t) will at this stage be slowly
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Figure 1: The flow configuration of the two-fluid system and the general structure
of a bottom gravity current.

varying over the horizontal position x and in time t. This approach to gravity cur-
rents has been exploited successfully by numerous researchers in the past and we
refer the reader to the book by Simpson [1] for an extensive bibliography and com-
parisons between theory based on this low aspect ratio approach and experiments.
The general structure of a bottom gravity current is shown in Figure 1.

A distinguished feature of these flows, which is the focus of this study, is the
formation of a rear shock behind the head of the gravity current. Experiments exe-
cuted by Rottman and Simpson [2] examined instantaneous releases for
0 < hi ≤ 1, where hi is the initial depth ratio between the released heavy fluid
and the total depth of the two-fluid system in the rectangular channel. Their obser-
vations revealed that for hi equal to or slightly less than unity the disturbance gen-
erated at the proximal end wall has the appearance of an internal hydraulic drop.
On the other hand, for smaller values of hi (� 0.7) this disturbance is a long wave
of depression. Currently there are no theoretical model-based calculations that can
accurately predict this bifurcation in behaviour which occurs in the experimen-
tal results as hi is varied. These experiments did however serve to emphasize the
importance of including the effects of the ambient fluid on the bottom boundary
current when the current initially occupies a large fraction of the total depth.

D’Alessio et al [3] employed a two-layer shallow-water model to study bot-
tom gravity currents released from rest. Using MacCormack’s method [4] to inte-
grate numerically the hyperbolic system they were able to achieve good qualita-
tive agreement with the experimental results of Rottman and Simpson [2]. Also,
employing multiple scales arguments they were able to show analytically the
dependence of internal bore formation (i.e. rear shock) on initial fractional depth of
the release volume. Their analysis, however, did not confirm the value of hi � 0.7
referred to earlier but rather gave the lower value of hi = 0.5 as the minimum
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fraction for bore initiation. This is perhaps not surprising when one contrasts the
relative simplicity of a shallow water (hydraulic) model for what is a complex
flow involving possible nonhydrostatic effects in various regions of the flow due
to streamline curvature, unresolved small scale dissipation and other effects.

The goal of the present work is to extend the analysis in [3] to include bottom
gravity currents released with an arbitrary constant initial velocity in a rectangular
channel.

2 Formulation

The flow configuration and general structure of the gravity current is depicted in
Figure 1. Here, η(x, t) represents the dimensionless displacement of the free sur-
face from its undisturbed height, (u1, u2) are the dimensionless fluid velocities
in Cartesian coordinates (x, z). In dimensionless form the mean depth of the two
layer system measured from z = 0 is taken to be unity, and h(x, t) is the dimen-
sionless fractional thickness of the bottom layer (or gravity current). The flat bot-
tom of the rectangular channel is located at z = 0. The flow is driven by the
buoyancy force arising because of the difference between the density ρ2 of the
bottom layer and the density ρ1 of the ambient fluid.

In dimensionless variables the governing shallow-water equations take the form:

∂u1

∂t
+ u1

∂u1

∂x
+
∂η

∂x
= 0 , (1)

∂

∂t
(h− g′

g
η) +

∂

∂x
[(1 +

g′

g
η − h)u1] = 0 . (2)

∂u2

∂t
+ u2

∂u2

∂x
+

(
1 − g′

g

)
∂η

∂x
+
∂h

∂x
= 0 , (3)

∂h

∂t
+

∂

∂x
(hu2) = 0 . (4)

In the above g′ = g(ρ2−ρ1)/ρ2 is the reduced gravity and the parameter g′/g is a
measure of the stratification of this two-fluid system. As explained in [3], it is also
a measure of the importance of the free surface on the flow since letting g′/g → 0
filters out surface wave phenomena. The system of equations (1)-(4) is posed as an
initial value problem subject to the initial conditions

u1(x, 0) = 0 , u2(x, 0) = u20 , η(x, 0) = 0 , h(x, 0) = G(x) , (5)

the impermeability conditions

u1(0, t) = 0 , u2(0, t) = 0 , (6)

the slope conditions
∂η

∂x
(0, t) =

∂h

∂x
(0, t) = 0 , (7)
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and lastly the far-field conditions

u1(x, t) → 0 , u2(x, t) → 0 , η(x, t) → 0 , h(x, t) → 0 as x→ ∞ . (8)

In the above G(x) specifies the initial configuration of the two-fluid system. We
are particularly interested in initial rectangular configurations of the form

G(x) =

{
h0 if 0 ≤ x ≤ x0

0 if x > x0

, (9)

where h0 is the nondimensional initial thickness of the gravity current and u20 is
its corresponding initial velocity. The parameter h0 is thus the ratio of the initial
depth of the heavy fluid to that of the two-fluid system.

An important simplified model is the weakly stratified model wherein we
neglect terms of O(g′/g) on the assumption that the initial density difference is
small. It has been shown in [3] that in this limit the governing equations can be
reduced to the two-by-two system

∂u2

∂t
+

(
u2 +

∂η

∂u2

)
∂u2

∂x
+

(
1 +

∂η

∂h

)
∂h

∂x
= 0 , (10)

∂h

∂t
+

∂

∂x
(hu2) = 0 , (11)

together with the two algebraic relations given by

η = η(u2, h) = − u2
2h

1 − h
− 1

2
h2 , (12)

u1 = − hu2

1 − h
. (13)

Alternatively, the above can be expressed more compactly as

∂u2

∂t
+

(1 − 3h)
(1 − h)

u2
∂u2

∂x
+

(
1 − h− u2

2

(1 − h)2

)
∂h

∂x
= 0 , (14)

∂h

∂t
+

∂

∂x
(hu2) = 0 . (15)

Another more simplified model worth mentioning is the weakly stratified deep
ambient layer model given by

∂u2

∂t
+ u2

∂u2

∂x
+
∂h

∂x
= 0 , (16)

∂h

∂t
+

∂

∂x
(hu2) = 0 . (17)

This model applies when h� 1.
In the next section we carry out a multiple scales analysis on the weakly strati-

fied model equations to elicit information regarding rear shock formation.

448  Advances in Fluid Mechanics VI

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



3 Weakly nonlinear analysis

In this section we will analytically investigate the formation of the rear shock
behind the head of the gravity current. Since shock formation is a nonlinear phe-
nomenon, we employ a weakly nonlinear analysis, similar to that in [3], on the
weakly stratified model equations given by (14) and (15). We first expand the flow
variables about the basic state given by (u, h) = (u0, h0), taking u ≡ u2, which
corresponds to the initial configuration. The weakly stratified model equations can
then be reduced to the following quadratically nonlinear system:

∂û

∂t
+

(
u0(1 − 3h0)

(1 − h0)
+

(1 − 3h0)
(1 − h0)

û− 2u0

(1 − h0)2
ĥ

)
∂û

∂x

+
(

(1 − h0)3 − u2
0

(1 − h0)2
− 2u0

(1 − h0)2
û− [(1 − h0)3 + 2u2

0]
(1 − h0)3

ĥ

)
∂ĥ

∂x
= 0 , (18)

∂ĥ

∂t
+ (h0 + ĥ)

∂û

∂x
+ (u0 + û)

∂ĥ

∂x
= 0 , (19)

where the hat denotes the deviation from the basic state (u0, h0).
Linearizing the above equations and assuming a wave-like solution

u(x, t) = u(ξ) , h(x, t) = h(ξ) where ξ = x− ct

(dropping the hats) we find that the linearized speeds

c± =
(

1 − 2h0

1 − h0

)
u0 ±

√
h0

1 − h0

√
(1 − h0)2 − u2

0 , (20)

guarantee a nontrivial solution. For 0 ≤ u0 ≤ 1 it is clear that the speeds are real
in the triangular region h0 ≤ 1 − u0.

Equations (18) and (19) can be combined to yield a single equation given by
(again dropping the hats)

htt + a1hxt + a2hxx = −(uh)xt + a3(uux)x − a4(hhx)x − a5(uh)xx , (21)

with subscripts denoting partial differentiation and

a1 =
2u0(1 − 2h0)

(1 − h0)
, a2 =

u2
0(1 − 3h0 + 3h2

0) − h0(1 − h0)3

(1 − h0)2
,

a3 =
h0(1 − 3h0)

(1 − h0)
, a4 =

h0[(1 − h0)3 + 2u2
0]

(1 − h0)3
, a5 =

u0(1 − 2h0 + 3h2
0)

(1 − h0)2
.

We next introduce

ξ = x− c−t , η = x+ c−t , T = εt , h = εh̃ , u = εũ . (22)
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In addition, we expand the variables in the following series

h̃ = h(0) + εh(1) +O(ε2) and ũ = u(0) + εu(1) +O(ε2) . (23)

The leading order equations then become

αh(0)
ηη − βh

(0)
ηξ = 0 , (24)

c−(u(0)
η − u

(0)
ξ ) +

u0(1 − 3h0)
(1 − h0)

(u(0)
η + u

(0)
ξ ) =

− [(1 − h0)3 − u2
0]

(1 − h0)2
(h(0)

η + h
(0)
ξ ) , (25)

with α = c2− + a1c− + a2 and β = 2(c2− − a2). The solutions have the form

h(0) = φ(ξ, T ) + ψ(η +
α

β
ξ, T ) , (26)

u(0) =
Γ
γ
φ(ξ, T ) −

(1 + α
β )Γ

ω
ψ(η +

α

β
ξ, T ) , (27)

where φ and ψ are arbitrary functions and

Γ =
[(1 − h0)3 − u2

0]
(1 − h0)2

, γ = c− − u0(1 − 3h0)
(1 − h0)

,

ω =
(

1 − α

β

)
c− +

(
1 +

α

β

)
(1 − 3h0)u0

(1 − h0)
.

As we will shortly see, of importance to our analysis is the function φ.
Carrying the analysis to the next order enables us to find the correction h(1).

After some algebra the following equation for h(1) emerges

αh(1)
ηη − βh

(1)
ηξ = A(ξ, T ) +B(ξ, η, T ) , (28)

where

A(ξ, T ) = (2c− − a1)φTξ +
s

2
(φ2)ξξ , (29)

with s = 2Γ(c−−a5)/γ+Γ2a3/γ
2−a4. To ensure that h(1) remains bounded as

ξ, η → ±∞ we imposeA = 0 as a solvability condition. We note that the function
B does not enter into the analysis.
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Figure 2: Analytical predictions showing initial configurations which should result
in a rear shock.

Integrating A = 0 with respect to ξ gives

φT + bφφξ = 0 , b =
s

2c− − a1
, (30)

where it was assumed that φ has compact support. If we let φ(ξ, 0) = f(ξ) repre-
sent the initial condition, then the solution to the above can be expressed implicitly
in parametric form in terms of the parameter τ as

φ(ξ, T ) = f(τ) along ξ = bT f(τ) + τ . (31)

Shock formation occurs when |φξ| → ∞ where

φξ =
f ′(τ)

1 + bT f ′(τ)
, (32)

which becomes infinite when T = −1/bf ′(τ). Along the back side of a smooth
curve f(τ), where f ′(τ) > 0, a shock will form if b < 0. In terms of the initial
configuration specified by u0 and h0, with u0 replacing u20 in equation (5), this
condition can be expressed as

2F1F2F3 + F 2
1F4 − F 2

2F5 < 0 , (33)

where

F1 =
(1 − h0)3 − u2

0

(1 − h0)2
, F2 =

u0h0

1 − h0
+

√
h0

1 − h0

√
(1 − h0)2 − u2

0 ,
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F3 = −u0h0(1 + h0)
(1 − h0)2

+
√

h0

1 − h0

√
(1 − h0)2 − u2

0 , F4 =
h0(1 − 3h0)

(1 − h0)
,

F5 =
h0[(1 − h0)3 + 2u2

0]
(1 − h0)3

.

A plot of the region satisfying the above inequality is shown in Figure 2. As a
check, if we set u0 = 0 then the above condition collapses to simply h0 > 1/2
which is in full agreement with our previous result reported in [3].

We conclude this section by mentioning that if the above analysis is repeated on
the weakly stratified deep ambient layer model equations (16)-(17), the prediction
is that a rear shock should always form. This result, however, is not consistent
with our numerical simulations. Thus, the further simplifications inherent in these
equations render them inadequate in capturing the essential physics of the flow.

4 Numerical results and discussion

We next discuss the technique used to numerically integrate the weakly stratified
equations. The goal here is to validate the analytical predictions derived in the
previous section.
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Figure 3: The evolution of the gravity current with x0 = 1, h0 = 0.3 and u0 = 0.

In order to obtain numerical solutions to the weakly stratified equations we
employed the SLIC method which is a conservative high-order TVD scheme [5].
Based on the MUSCL-Hancock approach, second-order accuracy is obtained by
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considering a piecewise linear reconstruction of the cell-averaged approximations
over computational cells of the spatial domain. A slope limiter is applied in order
to obtain non-oscillatory results.

The cell-averaged approximate solution is updated at the subsequent time level
by a finite-volume scheme. The numerical flux employed is the FORCE flux,
which is given by the arithmetic mean between the Lax-Friedrichs flux and the
two-step Lax-Wendroff flux. The resulting scheme is thus centred and as such does
not require the information provided by the decomposition of the Jacobian of the
flux vector into characteristic fields which is essential for upwind based methods.

Shock formation can be determined from the numerical solution by examining
the solution for h(x, t) as a function of x for a fixed value of t. This distribution
reveals the structure of the gravity current at a particular time. In Figure 3 we
present the evolution of the gravity current resulting from the release from rest of
a fixed volume of fluid with h0 = 0.3. As expected, due to the low value of h0

the disturbance generated at the proximal end wall evolves into a long wave of
depression on the back side of the head of the gravity current.

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t=1 
t=3 t=5 

t=9 
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x 

Figure 4: The evolution of the gravity current with x0 = 1, h0 = 0.3 and u0 = 0.5.

The evolution presented in Figure 4 indicates that with the same initial depth
ratio of h0 = 0.3, an initial velocity of u0 = 0.5 is sufficiently large to generate
a gravity current exhibiting the formation of a rear shock. To illustrate the depen-
dence of the generation of a rear shock on the initial velocity of the heavy fluid, in
Figure 5 we display the structure of the gravity current corresponding to different
values of u0 at a fixed time. It can clearly be seen that as u0 increases the back

Advances in Fluid Mechanics VI  453

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



0

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
u

0
=0.2

u
0
=0.4

u
0
=0.6

h 

x 

Figure 5: The structure of the gravity current with x0 = 1 and h0 = 0.3 at t = 3.

side of the head of the gravity current steepens. Our numerical experiments indi-
cate that the critical initial velocity for the formation of the rear shock is in good
agreement with the analytical prediction for various values of h0.

5 Concluding remarks

Discussed in this paper are bottom gravity currents flowing on a flat bottom of a
rectangular channel. In particular, the interest here was on the formation of a rear
shock formed behind the head of the gravity current. Under conditions of weak
stratification a simplified model has been constructed and is amenable to analyt-
ical treatment. A weakly nonlinear analysis was successful in predicting when a
rear shock should form. These predictions were confirmed by extensive numerical
experiments.

Financial support for this research was provided by the Natural Sciences and Engi-
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