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Abstract

The second-order wave loads are computed for the diffraction of monochromatic
waves by a surface-piercing vertical cylinder in the finite and infinite fluid depths.
The Weber transform method which is essentially a Hankel transform method with
a more general kernel, is applied to compute the second-order force due to the
second-order velocity potential. Suitable closed contours in the complex plane are
used to derive the analytical solution of the improper integrals involved in this
study. This makes the present solution distinct from the other available solution of
the second-order forces.

1 Introduction

The fluid viscosity and the irrotational flow are important in determining the wave
induced loads on offshore structures. The wave loading estimations for small vol-
ume structures are based on the well-known “Morison Equation” which involves
both viscous drag and inertia forces. If the characteristic dimension of the structure
is comparable to the wavelength, the diffraction theory should be applied to find
the wave induced loads upon the structure.

There are some fundamental second-order phenomena that can not be predicted
in the linearized wave theory. The second-order phenomena in monochromatic
waves are the steady mean drift forces and the oscillating forces with a frequency
twice the first order frequency. The force oscillating with the difference of fre-
quencies that cause slow-drift motion of moored structures and the loads with
sum frequencies that cause springing on TLPs are the second-order phenomena
in multi-chromatic waves.
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Hunt and Baddour [2] derived a second-order solution for the diffraction of a
nonlinear progressive wave in fluid of infinite depth, incident on a vertical, surface-
piercing, circular cylinder. They applied a modified form of Weber’s integral the-
orem to obtain the second-order diffracted velocity potential and the associated
wave force. Newman [5] analyzed the second-order wave force on a vertical cylin-
der by the application of the Weber transformation to derive the second-order
potential. Solutions for the second-order forces associated with the first and the
second-order velocity potentials are evaluated directly from pressure integration
over the cylinder surface for the case of infinite fluid depth. He extended the solu-
tion to the case of finite fluid depth.

Rahman [6] extended the Lighthill’s [3] second-order theory to the cases of
intermediate and shallow fluid depth waves. Buldakov et al. [1] studied the diffrac-
tion problem of a unidirectional incident wave group by a bottom-seated cylinder.
The amplitude of the incoming wave was assumed to be small in comparison with
other linear scales of the problem to develop the corresponding second-order per-
turbation theory. They used the Fourier transform to treat time variation and sep-
arated spatial variables in solving the non-homogeneous second-order problem.
The Weber transform is adopted to find the solution of the second-order velocity
potential and the associated wave force. The computations are carried out in fluid
of finite and infinite depths.
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Figure 1: Schematic diagram of the circular surface piercing cylinder of radius b.

2 Governing mathematical equations

A rigid vertical cylinder of radius b is acted upon by a train of regular progressive
surface waves of amplitude A (Fig.1). It is assumed that the fluid is incompressible,
inviscid and the motion is irrotational. The fluid flow field can be defined by a
scalar function called velocity potential and denoted by Φ(r, θ, z, t). If the analysis
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is approximated up to the second-order, it can be written that Φ = Φ� + Φq ,
where Φ� and Φq are the linear and the quadratic diffraction velocity potentials.
The motion of the fluid is subjected to the Laplace equation in fluid domains, a
free-surface kinematic boundary condition and a free-surface dynamic boundary
condition. The fluid flow field is also subjected to a bottom condition that indicates
no flux of mass through the bottom of the fluid, a radiation condition at a large
distance from the body and a body surface boundary condition.

The total horizontal force acting upon the surface of the cylinder is obtained by
the integration of the pressure along the surface of the cylinder. The fluid pres-
sure is determined using Bernoulli’s equation. The second-order force is partly
due to the contribution of the first-order potential and partly due to the effect of the
second-order potential. Using Weber’s transform the contribution of the second-
order potential is derived and computed by direct integration of the attributed pres-
sure along the surface of the cylinder.

3 The second-order velocity potential

This section is devoted to obtain the explicit expression of the second-order poten-
tial with the help of Weber’s transform for the infinite and finite depth ocean. The
mathematical developments are given below for each case.

3.1 Infinite fluid depth

The second-order velocity potential may be written in the form of Φq = φqe
−i 2ωt.

The time independent quadratic potential φq can be expressed by the Fourier series
in the form of

φq(r, θ, z) =
∞∑

n=0

φ(n)
q (r, z) cosnθ, (1)

where the Fourier coefficients φ
(n)
q (r, z) = αn

2π

∫ 2π

0
φq(r, θ, z) cosnθ dθ in which

α0 = 1 and αn = 2 for n ≥ 1.
The modified Weber transform that is an extension of the Hankel’s transform

with a more general kernel is applied to find the solution of the second-order
velocity potential. If the term φ̂(k) is denoted as the transformation of φ(r), the
transform pairs are

φ̂(n)(k) =
∫ ∞

b

φ(n)(r)Wn(kb, kr)rdr

φ(n)(r) =
∫ ∞

0

φ̂(n)(k)
Wn(kb, kr)

J ′
n

2(kb) + Y ′
n

2(kb)
kdk, (2)

where Wn(kb, kr) = Jn(kr)Y ′
n(kb)− Yn(kr)J ′

n(kb) is the kernel for the integral
transformation.
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Substituting (1) in the Laplace equation in cylindrical coordinates and taking
the Weber transform of it, an ordinary differential equation is obtained,

φ̂(n)
zz (k, z) − k2φ̂(n)(k, z) = 0 (3)

The solution φ̂(n)(k, z) = φ̂(n)(k)ekz satisfies (3). Using the transformation (2),
a solution for the θ-independent quadratic velocity potential is constructed in the
form

φ(n)
q (r, z) =

∫ ∞

0

φ̂(n)
q (k)ekzWn(kb, kr)

k dk

J ′
n

2(kb) + Y ′
n

2(kb)
. (4)

This solution satisfies the body surface boundary and bottom boundary conditions.
The multiplication of the solution (4) by cosnθ also satisfies the Laplace equation.
The solution (4) satisfies the free surface boundary condition provided that

φ̂(n)(k) =
2 ωνA2αn

k − 4ν
Ŝ(n)(k), (5)

where Ŝ(n)(k) is the transformation of S(n)(νr). The function S(n)(νr) is defined
by

S(n)(νr) = i n+1
∞∑

m=0

(−1)mBmn(νr) +
i n+1

2

n−1∑
p=1

Cpn(νr) (6)

where

Bmn(νr) = Am(νr)Am+n(νr) + A′
m(νr)A′

m+n(νr) +

m(m + n)

ν2r2
Am(νr)Am+n(νr)

Cpn(νr) = Ap(νr)An−p(νr) + A′
p(νr)A′

n−p(νr) − p(n − p)

ν2r2
Ap(νr)An−p(νr).

The time-independent quadratic velocity potential may be expressed in the form

φq(r, θ, z) = 2 ωνA2
∞∑

n=0

αn cosnθ

∫ ∞

0

Ŝ(n)(k)
k − 4ν

ekzWn(kb, kr) ×

k dk

J ′
n

2(kb) + Y ′
n

2(kb)
(7)

that satisfies the governing equations and all the boundary conditions.
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3.2 Finite fluid depth

The second-order time-independent velocity potential may be expressed for the
case of finite fluid depth as

φq(r, θ, z) =
2gK2A2

ω

∞∑
n=0

αn cosnθ

∫ ∞

0

T̂ (n)(k)
cosh k(z + d)

k sinh kd − 4ν cosh kd

Wn(kb, kr)
J ′

n
2(kb) + Y ′

n
2(kb)

k dk, (8)

where T̂ (n)(k) is the Weber transform of T (n)(Kr) and

T (n)(Kr) = S(n)(Kr) +
3
2
i n+1sech2Kd E(n)(Kr). (9)

The function S(n)(Kr) is expressed in (6) and E(n)(Kr) is the extra term due to
the limitation of the fluid depth,

E(n)(Kr) =
∞∑

m=0

(−1)m
[
λmH(1)

m (Kr)Am+n(Kr) + λm+nH
(1)
m+n(Kr) ×

Jm(Kr)
]

+
n−1∑
p=1

[
λpH

(1)
p (Kr)An−p(Kr) + λn−pH

(1)
n−p(Kr)Jp(Kr)

]
.

The complete derivation of the velocity potentials in infinite and finite fluid depth
can be found in Mousavizadegan [4].

4 The quadratic force

This section contains the evaluation of second-order forces for the infinite and
finite depth ocean. The analytical solutions are described below.

4.1 Infinite fluid depth

The quadratic force may be expressed in the form

Fq = �{
fqe

−i 2ωt
}

, (10)

where � stands for the real part. The contribution of the solution φq(r, θ, z) to
the time-independent quadratic force stems only from the term n = 1 in (7). The
non-dimensional time independent quadratic force f̂q = fq

ρgA2b can be obtained by
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integrating the transient second-order pressure along the surface of the cylinder.
Carrying out the integration, it can be written that

f̂q = −4iν

b

∫ ∞

b

G(νr)S(1)(νr)r dr, (11)

where

G(νr) = 4ν

∫ ∞

0

W1(kb, kr)
J ′

1
2(kb) + Y ′

1
2(kb)

dk

k(k − 4ν)
. (12)

The integral in (12) is evaluated by the contour integration in the complex k-plane.
The suitable contour for this problem is the semi-circular contour of infinite radius
on the right side of the imaginary axis which contains the first and fourth quadrants.
There exists one singularity k = 4ν which lies on the path of integration along the
real axis.

Finally, the quadratic force can be obtained from,

f̂q =
id0(νb)

νb

{∫ ∞

0

K0(4νby)

y2(1 + y2)K ′
1(4νby)

dy − π

2

[ H
(2)
0 (4νb)

H
′ (2)
1 (4νb)

+
H

(1)
0 (4νb)

H
′ (1)
1 (4νb)

]}

+
4i

b

∫ ∞

b

{∫ ∞

0

K1(4νry)

y(1 + y2)K ′
1(4νby)

dy − π

2

[ H
(2)
1 (4νr)

H
′ (2)
1 (4νb)

+
H

(1)
1 (4νr)

H
′ (1)
1 (4νb)

]}
Z(νr)dr,

(13)
where

d0(νb) =
2i

π

∞∑
m=0

(−1)mεmλm, Z(νr) =
∞∑

m=1

dm(νb)H(1)
m (νr)Am(νr),

dm(νb) = (−1)m+1m(λm+1 − λm−1) m ≥ 1, λm =
J ′

m(νb)

H
′ (1)
m (νb)

.

This result is similar to the one obtained by Newman [5]. The difference is in the
solution of the contour integral for G(νr). Here, the solution is a combination of
the first and second kind of Hankel’s functions. In contrast, Newman’s result is
expressed only by the second kind of the Hankel function.

4.2 Finite fluid depth

Because of orthogonal properties of the cosine functions, only the term propor-
tional to cos θ in (8) contributes to the second-order force due to the second-order
potential. The second-order force coefficient can be obtained for the case of finite
fluid depth by

f̂q = −4iK

b

∫ ∞

b

G(Kr)T (1)(Kr) r dr, (14)
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where

G(Kr) =
2K

i

∫ ∞

0

{ H
(2)
1 (kr)

H
(2)′
1 (kb)

− H
(1)
1 (kr)

H
(1)′
1 (kb)

} k−1 sinh kd dk

k sinh kd − 4ν coshkd

=
2K

i
(I2 − I1) (15)

The integral I1 can be computed by using the contour integration along a semi-
circular contour above the real axis. The integral I2 is computed using a semicir-
cular contour below the real axis. The integrand contains a singular point along the
real axis and infinite number of singular points along the imaginary axis.

The final solution for the quadratic force coefficient is found for the case of finite
fluid depth as

f̂q =
4id0(Kb)

b

{ ∞∑
n=1

gnK0(κnb)

κnK ′
1(κnb)

− g0

κ0

[ H
(1)
0 (κ0b)

H′
1
(1)(κ0b)

+
H

(2)
0 (κ0b)

H′
1
(2)(κ0b)

]}

+
4i

b

∫ ∞

b

{ ∞∑
n=1

gn
K1(κnr)

K ′
1(κnb)

− g0

∫ ∞

b

[ H
(1)
1 (κ0r)

H′
1
(1)(κ0b)

+
H

(2)
1 (κ0r)

H′
1
(2)(κ0b)

]}
Z(Kr)dr

+
6iK

b
sech2Kd

∫ ∞

b

{ ∞∑
n=1

gn
K1(κnr)

K ′
1(κnb)

− g0

∫ ∞

b

[ H
(1)
1 (κ0r)

H′
1
(1)(κ0b)

+
H

(2)
1 (κ0r)

H′
1
(2)(κ0b)

]
E(1)(Kr)rdr

}
,

(16)

where coefficients g0 and gn are defined by

g0 = 2πK

{
4ν/κ0

κ2
0d + 4ν − 16ν2d

}
, gn = 4πK

{
4ν/κn

κ2
nd − 4ν + 16ν2d

}
.

(17)

The terms denoted by κ0 and κn , n = 1, 2, 3 . . . are the roots of the transcendental
equations κ0 tanh κ0d = 4ν and κn tan κnd = −4ν, respectively. The first and
the second part of (16) are the same as the force equation (13) for the infinite fluid
depth case. The last part is an extra term due to the limitation of the fluid depth.

5 Results and discussion

The solutions contain considerable interactions of the Bessel and the modified
Bessel functions of various kinds and orders. These functions are evaluated with
double-precision routines. All computations are carried out using a PC with an
Intel(R) Pentium(R) 4 CPU 1.80Ghz and total memory of 384MB.

The second-order force coefficient f̂q is obtained through the solution of (13) for
the case of infinite fluid depth. The force equation (13) consists of four parts. The
calculation of the second part is straightforward. There are three infinite integrals.
The integrand of the first consists of a combination of the modified Bessel function
of second kind. The second integral is a double infinite integral. The integrand
of this integral consists of a combination of the modified Bessel function of the
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second kind of order one and an infinite series. This series consists of the Bessel
and Hankel functions of the first kind of different orders. The integrand of the third
infinite integral consists of a combination of the Hankel function of the first and
the second kinds. It also consists of the infinite series as explained already. These
integrals are calculated by the Simpson three-eights rule.

The computation of the first integral is straightforward. The solution for each
νb = const. is carried out in two steps. First the infinite interval is divided into
small segments of 2k − 2k−1, k = 0, 1, 2, · · · and k − 1 ≥ 0. The result on each
subinterval is obtained for a convergence error in order of 10−6. The solutions
for the segments are added together to reach an error less than 10−8. The second
integral is a double infinite integral. The computation are carried out for each step
(νb = const.), while r is varied from b to infinity. The result for the infinite series
is obtained with an error less than 10−8. The result of the infinite internal integral
is obtained in the same way as mentioned in the last paragraph. The third integral
is also found by the Simpson method of three-eights rule with an error less than
10−6. However, the integrand of this integral has a very oscillatory nature. The
computations are very time-consuming for large values of νr.

The solutions for the real and imaginary parts of the second-order force coeffi-
cients f̂q are displayed in Fig. 2. They are compared with the published results of
Newman [5]. The imaginary part of both solutions has the same sign and almost
the same value. The real part of solutions has a different sign due to the different
direction of the incoming waves. The values of the real part for small values of the
νb are also different. The differences are due to the different contours that are used
in the integration process. It seems that our computations are more reliable due to
the fact that the function G(νr) in (10) is a real function. Newman’s solution [5]
for (10) is a complex function, while ours is a real one.
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Figure 2: Real and imaginary parts of the non-dimensional quadratic force in infi-
nite fluid depth.
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The quadratic force coefficient in finite depth is obtained through the solution
of (16) for different depth-radius ratios. The first and second parts in (16) are the
same as (10) in the case of infinite fluid depth. However, the infinite integrals from
zero to infinity are replaced by an infinite series that has very good convergence
properties and makes the computations faster. The third part is an extra term due
to the limitation of the fluid depth.
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Figure 3: Real and imaginary parts of the extra term due to the limitation of the
fluid depth.

The extra part is denoted by f̂qex . This part consists of two infinite integrals.
The computation of the first integral is quite fast due to the proper behavior of the
modified Bessel function. The second integral is very oscillatory and converges
slowly. This part of the computation is the most time-consuming part. The real
and imaginary parts of f̂qex are depicted in Fig. 3. The contribution of this part is
relatively small to the quadratic force. The quadratic force coefficient f̂q is shown
in Fig. 4. The infinite integral was solved using the Simpson three-eights rule with
an error less than 5 × 10−6. The infinite series converged with an error of order
10−8 or less. The effect of the limitation of depth is obvious and diminishes with
an increase in the depth to radius ratio. This part of the wave force is affected by
the limitation of fluid depth in a wide range of frequency spectrum.

6 Conclusions

Using the Weber transform, the second-order diffraction potential is evaluated in
both cases of infinite and finite fluid depths. The quadratic force coefficients, due to
the effect of the second-order velocity potential, are obtained using the direct inte-
gration of the related transient pressure around the cylinder surface. The resulting
force coefficient is an integral along a horizontal distance from the vicinity of the
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Figure 4: Real and imaginary parts of the quadratic force in various depth to radius
ratios.

cylinder to infinity. The integrand of this integral contains an improper integral
from zero to infinity of a real function. The expected solution is also a real func-
tion for the internal integral. The contour integration rule is adopted to obtain the
solution of the internal integrals. The solutions are real functions for both infinite
and finite fluid depth.
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