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Abstract

A mathematical model for the flow and heat transfer between two parallel plates is
studied, using the power law model. The flow due to a pressure gradient and flow
due to a moving upper plate are investigated. In the derivation the Navier-Stokes
and energy equations is reduced in line with the lubrication theory to provide scalar
differential equations. The velocity and temperature profiles are determined ana-
lytically and the results show that the power law index n = 1 compares favourably
with Newtonian profiles. The temperature field is increasing when n increases. The
Brinkman number Br, also shows a significance increase of the temperature field
when Br increases.
Keywords: lubrication theory, non-Newtonian flow, power law viscosity, shear
heating.

1 Introduction

In a typical operating situation lubricants can be subjected to extreme conditions,
such as high temperature, high pressure and shear rate. External heating and high
shear rates can lead to high temperature being generated within a fluid. Viscosity
is the most sensitive fluid property that represents a material’s internal resistance
to deform, see [8, 9]. In this paper the main focus will be on the effect of vis-
cosity variation due to the power law model see, [3, 5, 6] for example. However
for possible prediction of the results, the viscosity is considered to be constant in
section 2.1 and is allowed to vary in section 2.2. Similar laws are discussed, see
Andersson and Valnes [1] and Zheng and Zhang [10] in their study of boundary
layer flow along lubricated surface and for squeeze flow in Lian et al [4]. Con-
clusion is included in section 3. Fluids in which, viscosity is the only property to
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Figure 1: Schematic representation of the problem.

vary are termed generalised non-Newtonian fluids, see Schetz and Fuhs [7] and
Shames [8]. Considering a basic flow configuration, where the fluid flows between
parallel plates, will isolate the effect of viscosity variation. The temperature at the
top and bottom plates is fixed. The lubrication theory will be exploited to reduce
the governing equations to a more tractable form.

2 Governing equations

Two parallel plates geometrically define the problem in fig. 1. The independent
variables x denote the horizontal distance along the channel, y the vertical distance,
H the distance apart and L denotes typical length. The pressure and shear driven
cases are combined. For the pressure driven case both plates are fixed. For the shear
driven case the upper plate is moving at the speed U relative to the lower plate.
The upper and lower plates are maintained at T1 and T0 respectively. With the
hypothesis established above, the appropriate equations for modelling of this prob-
lem, the continuity, Navier-Stokes and energy equations are now stated. Initially
the dynamic viscosity, density, thermal conductivity and the coefficient of thermal
expansion denoted by µ, ρ, κ and β respectively are assumed to be constants. The
Navier-Stokes equations are combined with the energy equations to solve for the
velocity u, the pressure p and the temperature T of the fluid. See [2, 7, 9].

For incompressible fluids the governing equations may be written,
Continuity:

ρ (� · u) , = 0 (1)

Navier-Stokes equation:

ρ

(
∂u
∂t

+ (u · �)u
)

= −� p + ρg + �2(µ u) , (2)

422  Advances in Fluid Mechanics VI

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



Energy equation:

ρ cp

(
∂T

∂t
+ (u · �)T

)
= β T

[
∂p

∂t
+ (u · �) p

]
+ � · (κ�T ) + Φ . (3)

where,

Φ = µ

[
2
(

∂u

∂x

)2

+ 2
(

∂v

∂y

)2

+
(

∂u

∂y
+

∂v

∂x

)2
]

.

The components of the velocity vector u are denoted (u, v) in the (x, y) direc-
tion, t denotes time. The notation is discussed in the nomenclature table 1. Since
the fluid is considered to flow in a thin layer, the governing equations can be sim-
plified using this geometrical property. To determine the leading order terms, the
governing equations will be non-dimensionalised. An asymptotic simplification
known as lubrication theory may be used to simplify the governing equations. This
method is valid when the film is thin and the flow regime is laminar. See [7, 8, 9].
The variables are scaled in the following manner,

x = Lx′, y = Hy′, u = Uu′,

v =
HU

L
v′, t =

L

U
t′, µ = µ0µ

′,

T = T0 + ∆T0T
′, p = Pp′ =

µ0UL

H2
p′.

where all quantities with prime denote non-dimensional parameters. Since the film
is thin the aspect ration ε = H/L � 1. Using the scaled parameters eqns. (1)-(3)
may now be reduced to their final form:

∂u

∂x
+

∂v

∂y
= 0 , (4)

− ∂p

∂x
+

∂

∂y

(
µ

∂u

∂y

)
= 0 , (5)

∂p

∂y
= 0 , (6)

∂2T

∂y2
+ µ Br

(
∂u

∂y

)2

= 0 . (7)

where Br = (µ0U
2/κ0∆T0), Pe = (ρ0cpUL/κ0) and Re = (ρ0UL/µ0) repre-

sents the Brinkman, the Peclet and Reynolds numbers respectively. Despite the fact
that the Peclet number is large, the reduced Peclet number ε2Pe and the reduced
Reynolds number ε2Re are small and may be neglected in the governing equations.
The Brinkman number may be close to a unity and may be retained.

Derivation of the velocity and temperature profiles may be completed after the
boundary conditions associated with eqns. (4)-(7) are stated. A no slip boundary
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condition is applied at the bottom of the channel. The velocity at the top of the
plate moves at a constant velocity U hence the boundary conditions are listed as,

y = 0 , u = 0 , (8)

y = 1 , u = U = 1 . (9)

The temperature at the top and bottom of the plate are given as follows,

y = 0 , T = 0 , (10)

y = 1 , T = 1. (11)

The final equations will be solved using the boundary conditions above.

2.1 Newtonian model with constant viscosity

In this case for prediction of the correct results, we start with a simple case when
the viscosity is constant. In the latter stage the viscosity will be allowed to vary.
Now if the viscosity is considered to be constant, the velocity is determined by
integrating eqn. (5) with respect to y. Using the boundary conditions (8) and (9)
respectively to obtain,

u =
1
2

[
∂p

∂x

(
y2 − y

)]
+ Uy . (12)

The first term on the right hand side is the standard parabola for the pressure driven
flow. The last term is the classical straight line for the shear driven flow. The flux
is determined by integrating eqn. (12) from y = 0 to y = 1. If the flux is constant
the final integration leads to a linear pressure profile along the channel

p = −3Q(x − x0) +
3U

2
(x − x0) + p0, (13)

where p0 is the pressure and x0 is the position at the inlet. The governing equation
for the temperature profiles requires the velocity gradient, this gradient may be
determined by differentiating eqn. (12) with respect to y and combined with eqn.
(7) to obtain,

∂2T

∂y
= −Br

4

[(
∂p

∂x

)2 (
4y2 − 4y + 1

)
+ 2U

∂p

∂x
(2y − 1) + U2

]
. (14)

Integrating eqn. (14) twice with respect to y, applying the boundary conditions
(10) and (11) yields,

T = −Br

4

[
1
12

(
∂p

∂x

)2 [(
4y4 − 8y3 + 6y2 − 2y

)
+

U

3
∂p

∂y

(
2y3 − 3y2 + y

)]
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+
U2

2
(
y2 − y

)]
+ y . (15)

The first term in the square brackets shows that the temperature is quartic in y and
it occurs due to the pressure gradient. The second term appears due to the combi-
nation of the pressure and the shear. The last term is the straight-line distribution.
When the viscosity is not constant this simple analysis cannot be followed through.
In the next section, a specific case will be studied where the flow regime obeys the
power law model.

2.2 The power law model for variable viscosity in conduits

In the previous section the study was conducted for constant viscosity, in this sec-
tion the power law model with varying viscosity will be investigated. The velocity
and the temperature profiles will be derived using the power law model:

µ = m

∣∣∣∣∂u

∂y

∣∣∣∣
n−1

. (16)

where m is a constant and n is the power law index, (∂u/∂y), is the shear rate.
Setting n = 1 and m = µ, the Newtonian case will be retrieved. With n �= 1, Eqn.
(16) represent shear-thinning fluids, for n < 1, represent pseudo-plastic fluids and
n > 1 a dilatant fluids. The absolute value sign may lead to a regularized power
law model; consider the following two assumptions,

• Case (a), =⇒, (∂u/∂y) ≥ 0:
• Case (b), =⇒, (∂u/∂y) ≤ 0:

Integrating eqn. (5) with respect to y yields

µ
∂u

∂y
= (Gxy + C1) , (17)

where Gx = (∂p/∂y), Combining eqns. (16) and (17) gives,

∣∣∣∣∂u

∂y

∣∣∣∣
n−1

∂u

∂y
=

(Gx y + C1)
m

. (18)

Using case (a) above, the positive velocity gradient is given by,

∂u

∂y
=
[
(Gx y + C1)

m

] 1
n

. (19)

Integrating eqn. (19) with respect to y, and applying the boundary conditions (8)
and (9) gives the velocity profile as,

u =
n m

(n + 1)Gx

[(
Gx

m
y +

C1

m

)n+1
n

−
(

C1

m

)n+1
n

]
, (20)
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where C1 will be computed from,

U =
n m

(n + 1)Gx

[(
Gx

m
+

C1

m

)n+1
n

−
(

C1

m

)n+1
n

]
. (21)

To determine the temperature profile, eqns. (7) and (19) are combined to give,

∂2T

∂y2
= −m Br

[(
Gx y

m
+

C1

m

)n+1
n

]
. (22)

Integrating eqn. (22) twice with respect to y, and applying the boundary condi-
tions (10) and (11) to eliminate the constants of integration gives the temperature
profile as,

T = −A1

[(
Gxy

m
+

C1

m

) 3n+1
n

]

+ A1

[((
Gx

m
+

C1

m

) 3n+1
n

−
(

C1

m

) 3n+1
n

)
y −

((
C1

m

) 3n+1
n

)]
+ y,

(23)

where A1 = (n2 m3 Br)
((2n+1) (3n+1) G2

x) .
For the case (b) above, the same procedure may be followed to obtain the veloc-

ity and temperature profiles. The results for case (a), will be plotted and discussed
quantitatively.

2.3 Results and discussions

Three curves representing the velocity profiles for eqn. (12) are shown in fig.2.
Curve (a) represents the parabolic profile for the pressure driven flow. The max-
imum velocity of the flow appears at the centre of plate. Curve (b) represents
a linear profile for the shear driven flow, as expected from eqn. (12) the veloc-
ity increases linearly from 0 at the lower boundary to 1 at the upper boundary.
Curve (c) is the combination of both the shear and pressure driven flow. We observe
a parabolic profile with its maximum velocity near the moving upper plate.

Three temperature profiles corresponding to eqn. (15) are shown in fig. 3.
Curve (a) represents the shear driven case. This is a parabolic profile with its max-
imum temperature near the moving plate. Curve (b) represents the pressure driven
case, and curve (c) represents the combination of both the pressure and shear driven
cases, the parabolic type profiles with its maximum temperature towards the mov-
ing plate are shown. These results are standard for lubrication theory and may be
retrieved in [8, 9].

Fig. 4, represent three velocity profiles for eqn. (21). Each curve corresponds
to three different values of the power law index n = 0.8, n = 1 and n = 1.5
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Figure 2: The velocity profile for eqn (12).
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Figure 3: The temperature profile for eqn. (15).

respectively. All these curves are parabolic in shape and begin at the origin due
to the boundary conditions. These curves show an increasing velocity profile with
their maximum velocities towards the upper plate. Curve (b) with n = 1 compares
closely with the Newtonian case. The velocity profiles increase with an increasing
power law index n.
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Figure 4: The velocity profile for eqn. (21).

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) n = 0.05
(b) n = 0.8

(c) n = 1

(d) n = 1.5

y

T

Figure 5: The temperature profile for eqn. (23).

On fig. 5, four curves representing the temperature profile for eqn. (23) are
shown. Different values for n namely n = 0.05, n = 0.8, n = 1 and n = 1.5
are shown respectively on the corresponding curves. A linear profile is observed
in curve (a) with its maximum temperature T = 1 at y = 1. Three parabolic type
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Figure 6: The temperature profile for eqn. (23) with varying Br.

temperature profiles are observed in curves (b), (c) and (d) respectively. When n
increases the viscosity increases, and the temperature increases. The more viscous
is the fluid the higher the temperature.

The effect of Brinkman number is investigated. Large values of Br means that
the viscosity of the fluid is high. Fig. 6, shows four curves representing the tem-
perature profile as shown in fig. 5, (b). Each curve corresponds to different values
of Br, namely Br = 0.5, Br = 5, Br = 15 and Br = 25 respectively. A linear
profile is observed in curve (a) which is increasing across the layer to the top plate
T = 1 at y = 1. Curve (b) also increases nonlinearly across the layer to the upper
plate. Curves (c) and (d) shows parabolic profiles with their maximum tempera-
tures T = 1.03, at y = 0.86 and T = 1.22, at y = 0.78 respectively. When Br
increases, a significant increase in the temperature field is observed. This shows
that the temperature rise due to heat dissipation is significant when Br increases
from Br = 0.5 to Br = 25.

3 Conclusion

In this paper the problem of applying a thin layer of a power-law fluid between
parallel plates has been examined using the lubrication theory. The hydrodynamics
of equivalently Newtonian model with constant viscosity was studied. The integral
solutions for the velocity and temperature are presented and their flow patterns
were compared. It is clear that the Newtonian results compares closely with power
law model results particularly when the power law index n = 1, see figs. 2 and 4.

Advances in Fluid Mechanics VI  429

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



The results shown in figs. 3 and 5, a significance increase in the power law index n
results in a significance increase in the both the velocity and temperature profiles.
Fig. 6 clearly shows an increase in Br also influences the temperature. In future
we hope to improve the model by allowing the temperatures at the plate to vary in
the direction of the flow.
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Nomenclature

The following dependent variables are taken into consideration.

Name Symbol Typical Unit

value

Br = η0U
2/(k∆Tm) Brinkman number 0.01-0.5

cp Heat capacity 2000 J·kg−1·K−1

H Channel height 10−6 m

k Thermal conductivity 0.17 W·m−1·K−1

L Channel length 0.005 m

P Pressure scale 109 Pa

p Pressure Pa

Pe = ρcpLU/k Peclet number 105

Re = ρUL/η0 Reynolds number 40-2000

t Time s

T Temperature K

∆T Temperature drop 100 K

U Velocity scale 5 m/s

(u, v) Cartesian velocity m/s

(x, y) Cartesian coordinates m

ε Aspect ratio of the flow 10−4

η Dynamic viscosity kg·m−1·s−1

η0 Typical dynamic viscosity 0.01-0.5 kg·m−1·s−1

ρ Fluid density 1000 kg·m−3
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