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Abstract

The aim of this paper is to analyze the axisymmetric unsteady flow of a non-
Newtonian incompressible second order fluid in a straight rigid and impermeable
tube with circular cross-section of constant radius. To study this problem, we use
the one dimensional (1D) nine-directors Cosserat theory approach which reduces
the exact three-dimensional equations to a system depending only on time and on a
single spatial variable. From this system we obtain the relationship between mean
pressure gradient and volume flow rate over a finite section of the tube. Assuming
that the pressure gradient rises and falls exponentially with time, the 3D exact
solution for unsteady volume flow rate is compared with the corresponding 1D
solution obtained by the Cosserat theory using nine directors.
Keywords: Cosserat theory, nine directors, unsteady rectilinear flow, axisymmetric
motion, pressure gradient, second order fluid.

1 Introduction

A possible simplification to a three-dimensional model for an incompressible vis-
cous fluid inside a domain is to consider the evolution of average flow quantities
using simpler one-dimensional models. Usually, in the case of flow in a tube, the
classical 1D models are obtained by imposing additional assumptions and inte-
grating both the equations of conservation of linear momentum and mass over
the cross section of the tube. Here, we introduce a 1D model for non-Newtonian
Rivlin-Ericksen fluids of second order in an axisymmetric tube, based on the nine-
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director approach developed by Caulk and Naghdi [4]. This theory includes an
additional structure of directors (deformable vectors) assigned to each point on a
space curve (Cosserat curve), where a three-dimensional system of equations is
replaced by a one-dimensional system depending on time and on a single spatial
variable. The use of directors in continuum mechanics goes back to Duhen [7]
who regards a body as a collection of points together with associated directions.
Theories based on such a model of an oriented medium were further developed
by Cosserat and Cosserat [6] and have also been used by several authors in stud-
ies of rods, plates and shells (see e.g. Ericksen and Truesdell [8], Truesdell and
Toupin [17], Green and Naghdi [10, 11] and Naghdi [13]). An analogous hier-
archial theory for unsteady and steady flows has been developed by Caulk and
Naghdi [4] in straight pipes of circular cross-section and by Green and Naghdi [12]
in channels. The same theory was applied to unsteady viscous fluid flow in curved
pipes of circular and elliptic cross-section by Green et al. [9]. Recently, the nine-
director theory has been applied to blood flow in the arterial system by Robertson
and Sequeira [16] and also by Carapau and Sequeira [2, 3], considering Newto-
nian and shear-thinning flows, respectively. The relevance of using a theory of
directed curves is not in regarding it as an approximation to 3D equations, but
rather in their use as independent theories to predict some of the main properties
of the three-dimensional problems. Advantages of the director theory include: (i)
the theory incorporates all components of the linear momentum; (ii) it is a hierar-
chical theory, making it possible to increase the accuracy of the model; (iii) there
is no need for closure approximations; (iv) invariance under superposed rigid body
motions is satisfied at each order and (v) the wall shear stress enters directly in the
formulation as a dependent variable.

This paper deals with the study of the initial boundary value problem for an
incompressible homogeneous second order fluid model in a straight circular rigid
and impermeable tube with constant radius, where the fluid velocity field, given
by the director theory, can be approximated by the following finite series:

v∗ = v +
k∑

N=1

xα1 . . . xαN W α1...αN , (1)

with
v = vi(z, t)ei, W α1...αN = W i

α1...αN
(z, t)ei, (2)

(latin indices subscript take the values 1, 2, 3; greek indices subscript 1, 2, and
the usual summation convention is employed over a repeated index). Here, v rep-
resents the velocity along the axis of symmetry z at time t, xα1 . . . xαN are the
polynomial weighting functions with order k (this number identifies the order of
hierarchical theory and is related to the number of directors), the vectors W α1...αN

are the director velocities which are symmetric with respect to their indices and ei

are the associated unit basis vectors. When we use the director theory, the 3D sys-
tem of equations governing the fluid motion is replaced by a system which depends
only on a single spatial and time variables, as previously mentioned. From this new
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system, we obtain the unsteady relationship between mean pressure gradient and
volume flow rate, and the correspondent equation for the wall shear stress.

The aim of this paper is to develop a nine-director theory (k = 3 in equation (1))
for the unsteady flow of a second order fluid in a straight tube with constant radius,
to compare the corresponding volume flow rate with the 3D exact solution given by
Soundalgekar [15], when the pressure gradient rises and falls exponentially with
time.

2 Equations of motion

We consider a homogeneous fluid moving within a circular straight and imperme-
able tube, the domain Ω (see fig.1) contained in R

3. Its boundary ∂Ω is composed
by, the proximal cross-section Γ1, the distal cross-section Γ2 and the lateral wall
of the tube, denoted by Γw.

Figure 1: Fluid domain Ω with the components of the surface traction vector τ1, τ2

and pe.

Let xi (i = 1, 2, 3) be the rectangular Cartesian coordinates and for convenience
set x3 = z. Consider the axisymmetric motion of an incompressible fluid without
body forces, inside a straight circular tube, about the z axis and let φ(z, t) denote
the radius of that surface at z and time t. Using the notation adopted in Naghdi et
al. [4, 9], the three-dimensional equations governing the fluid motion are given by




ρ
(∂v∗

∂t
+ v∗,iv

∗
i

)
= ti,i,

in Ω × (0, T ),
v∗i,i = 0,

ti = −p∗ei + σijej , t = ϑ∗
i ti,

(3)

with the initial condition

v∗(x, 0) = v0(x) in Ω, (4)
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and the boundary condition

v∗(x, t) = 0 on Γw × (0, T ), (5)

where v∗ = v∗i ei is the velocity field and ρ is the constant fluid density. Equation
(3)1 represents the balance of linear momentum and (3)2 is the incompressibility
condition. In equation (3)3, p∗ is the pressure, σij are the components of the extra
stress tensor, t denotes the stress vector on the surface whose outward unit normal
is ϑ∗ = ϑ∗

i ei, and ti are the components of t.
For a general incompressible Rivlin-Ericksen fluid of second order, the compo-

nents of the extra stress tensor, in the constitutive equation (3)3, are given by (see
e.g. Coleman and Noll [5])

σij = µAij + α1Sij + α2AikAkj , i, j, k = 1, 2, 3 (6)

where µ is the constant viscosity, α1, α2 are material constants (normal stress mod-
uli) and Aij , Sij are the first two Rivlin-Ericksen tensors, defined by (see Rivlin
and Ericksen [14])

Aij =
∂v∗i
∂xj

+
∂v∗j
∂xi

, (7)

and

Sij =
∂Aij

∂t
+ v∗k

∂Aij

∂xk
+ Aik

∂v∗k
∂xj

+
∂v∗k
∂xi

Akj . (8)

Note that, if α1 = α2 = 0 in equation (6) we obtain the classical Newtonian
incompressible model.

We assume that the lateral surface Γw of the axisymmetric tube is defined by

φ2 = xαxα, (9)

and the components of the outward unit normal to this surface are

ϑ∗
α =

xα

φ
(
1 + φ2

z

)1/2
, ϑ∗

3 = − φz(
1 + φ2

z

)1/2
, (10)

where the subscript variable denotes partial differentiation. Since equation (9)
defines a material surface, the velocity field must satisfy the kinematic condition

φφt + φφzv
∗
3 − xαv∗α = 0 (11)

on the boundary (9).
Averaged quantities such as flow rate and average pressure are needed to study

1D models, in particular the unsteady relationship between mean pressure gradient
and volume flow rate over a finite section of the tube. Consider S(z, t) as a generic
axial section of the tube at time t defined by the spatial variable z and bounded by
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the circle defined in (9) and let A(z, t) be the area of this section S(z, t). Then,
the volume flow rate Q is defined by

Q(z, t) =
∫

S(z,t)

v∗3(x1, x2, z, t)da, (12)

and the average pressure p̄, by

p̄(z, t) =
1

A(z, t)

∫
S(z,t)

p∗(x1, x2, z, t)da. (13)

In the sequel, this general framework will be applied to the specific case of
the Cosserat nine-director theory in a rigid tube, i.e. φ = φ(z). Using condition
(1) it follows from Caulk and Naghdi [4] that the approximation for the three-
dimensional velocity field v∗ is given by

v∗ =
[
x1

(
1 − x2

1 + x2
2

φ2

)2φzQ

πφ3

]
e1 +

[
x2

(
1 − x2

1 + x2
2

φ2

)2φzQ

πφ3

]
e2

+
[ 2Q

πφ2

(
1 − x2

1 + x2
2

φ2

)]
e3 (14)

where the volume flow rate Q(t) is

Q(t) =
π

2
φ2(z)v3(z, t). (15)

We remark that the initial condition (4) is satisfied when Q(0) = ct. Also, from
Caulk and Naghdi [4] the stress vector on the lateral surface Γw is given by

tw =
[ 1
φ(1 + φ2

z)1/2

(
τ1x1φz − pex1 − τ2x2(1 + φ2

z)
1/2

)]
e1

+
[ 1
φ(1 + φ2

z)1/2

(
τ1x2φz − pex2 + τ2x1(1 + φ2

z)
1/2

)]
e2

+
[ 1
(1 + φ2

z)1/2

(
τ1 + peφz

)]
e3. (16)

Instead of satisfying the momentum equation (3)1 pointwise in the fluid, we impose
the following integral conditions

∫
S(z,t)

[
ti,i − ρ

(∂v∗

∂t
+ v∗

,iv
∗
i

)]
da = 0, (17)

∫
S(z,t)

[
ti,i − ρ

(∂v∗

∂t
+ v∗

,iv
∗
i

)]
xα1 . . . xαN da = 0, (18)

where N = 1, 2, 3.
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Using the divergence theorem and integration by parts, equations (17) − (18)
for nine directors, can be reduced to the four vector equations:

∂n

∂z
+ f = a,

∂mα1...αN

∂z
+ lα1...αN = kα1...αN + bα1...αN , (19)

where n, kα1...αN , mα1...αN are resultant forces defined by

n =
∫

S

t3da, kα =
∫

S

tαda, kαβ =
∫

S

(
tαxβ + tβxα

)
da, (20)

kαβγ =
∫

S

(
tαxβxγ + tβxαxγ + tγxαxβ

)
da, (21)

mα1...αN =
∫

S

t3xα1 . . . xαN da. (22)

The quantities a and bα1...αN are inertia terms written as follows

a =
∫

S

ρ
(∂v∗

∂t
+ v∗

,iv
∗
i

)
da, (23)

bα1...αN =
∫

S

ρ
(∂v∗

∂t
+ v∗

,iv
∗
i

)
xα1 . . . xαN da, (24)

and f , lα1...αN , which arise due to surface traction on the lateral boundary, are
given by

f =
∫

∂S

(
1 + φ2

z

)1/2
twds, lα1...αN =

∫
∂S

(
1 + φ2

z

)1/2
twxα1 . . . xαN ds.

(25)
The equation relating the mean pressure gradient with the volume flow rate will be
obtained using these quantities.

3 Results and discussion

We consider the case of a straight circular rigid and impermeable walled tube with
constant radius, i.e. φ = ct. Replacing the results (20) − (25) obtained for the
nine-director model into equations (19), we get the unsteady relationship

p̄z(z, t) = − 8µ

πφ4
Q(t) − 4ρ

3πφ2

(
1 + 6

α1

ρφ2

)
Q̇(t), (26)

were the notation Q̇ is used for time differentiation. Flow separation occurs when
the axial component τ1 of the stress vector on the lateral surface (cf. (16)) is in
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the direction of the flow, i.e. τ1 > 0. The expression for the wall shear stress τ1 is
given by

τ1 =
4µ

πφ3
Q(t) +

ρ

6πφ

(
1 + 24

α1

ρφ2

)
Q̇(t). (27)

Integrating equation (26), over a finite section of the tube, between z1 and position
z2 (z1 < z2), we get the mean pressure gradient

G(t) =
p̄(z1, t) − p̄(z2, t)

z2 − z1
=

8µ

πφ4
Q(t) +

4ρ

3πφ2

(
1 + 6

α1

ρφ2

)
Q̇(t). (28)

Now, let us consider the following dimensionless variables

ẑ =
z

φ
, t̂ = ω0 t, Q̂ =

2ρ

πφµ
Q, ˆ̄p =

φ2ρ

µ2
p̄, (29)

where φ is the characteristic radius of the tube and ω0 is the characteristic fre-
quency for unsteady flow. Substituting the new variables (29) into equation (26),
we obtain

ˆ̄pẑ = −4Q̂(t̂) − 2
3

(
1 + 6We

)
W2

0
˙̂

Q(t̂), (30)

where W0 = φ0

√
ρω0/µ is the Womersley number and We = α1/(ρφ2) is a

viscoelastic parameter, also called the Weissenberg number. The dimensionless
number W0 is the most commonly used parameter to reflect the unsteady pulsatil-
ity of the flow. Integrating (30) over a finite section of the tube between ẑ1 and
ẑ2, we get the relationship between mean pressure gradient and volume flow rate
given by

ˆ̄G(t̂) = 4Q̂(t̂) +
2
3

(
1 + 6We

)
W2

0
˙̂

Q(t̂). (31)

Moreover, the dimensionless form of equation (27) is

τ̂1 = 2Q̂(t̂) +
1
12

(
1 + 24We

)
W2

0
˙̂

Q(t̂) with τ̂1 =
φ2ρ

µ2
τ1.

Next we compare the exact solution for a rectilinear motion (given by Soundal-
gekar [15]) with the solution obtained by the nine-director theory in a straight
circular rigid tube with constant radius φ, when the pressure gradient rises and
falls exponentially with time.

3.1 Pressure gradient rising exponentially with time

Let us assume the following pressure gradient

−1
ρ
p∗z = k exp(θ2t), (32)

where k and θ are constants, with θ2 being the characteristic frequency. Then
the velocity field solution obtained by Soundalgekar [15], with | βφ |� 1 and
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| β
√

x2
1 + x2

2 |� 1, is given by

v∗3 =
[kβ2

4θ2

(
φ2 − (

x2
1 + x2

2

))
exp(θ2t)

]
e3, (33)

where β2 = ρθ2/
(
µ + α1θ

2
)
. From (33) the volume flow rate reduces to

Q(t) =
kφ4πρ

8
(
µ + α1θ2

)exp(θ2t). (34)

Using the nondimensional variables

t̂ = θ2t, Q̂ =
8µ

kφ4πρ
Q, (35)

into equation (34), we obtain the nondimensional volume flow rate

Q̂(t̂) =
1

1 + WeW2
0

exp
(
t̂
)
. (36)

In view of the pressure gradient (32) and equation (31) given by the nine-director
theory, we get the following nondimensional volume flow rate

Q̂(t̂) =
1

12 + 2W2
0 + 12W2

0We

[
3 exp(t̂)

+ exp
( −6t̂

W2
0 + 6W2

0We

)(9 + 2W2
0 + 9W2

0We

1 + WeW2
0

)]
. (37)

Next, we compare the relationship between the volume flow rates (36) and (37),
for a fixed Womersley number and different values of the Weissenberg number.
Results in fig.2 show that for W0 = 0.5, the solutions (36) and (37) have the
same qualitative behavior for increasing Weissenberg numbers, but show a large
deviation in time. Numerical simulations for different Womersley numbers have
shown similar results.

3.2 Pressure gradient falling exponentially with time

We consider the pressure gradient given by

−1
ρ
p∗z = k exp(−θ2t). (38)

The velocity field solution obtained by Soundalgekar [15], with | ζφ |� 1 and
| ζ

√
x2

1 + x2
2 |� 1, is given by

v∗3 =
[kζ2

4θ2

(
φ2 − (

x2
1 + x2

2

))
exp(−θ2t)

]
e3, (39)
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Figure 2: Volume flow rate when the pressure gradient is rising exponentially with
time for different values of Weissenberg number, with fixed Womersley
number (W0 = 0.5): nine-directors solution (37) (dotted line) and exact
3D solution (36) (dark line).

where ζ2 = ρθ2/
(
µ − α1θ

2
)

and the corresponding volume flow rate is

Q(t) =
kφ4πρ

8
(
µ − α1θ2

)exp(−θ2t). (40)

Using the dimensionless variables (35) into the preceding equation, we obtain

Q̂(t̂) =
1

1 −WeW2
0

exp
( − t̂

)
. (41)

Taking into account the pressure gradient (38) and the nine-directors equation
(31), we obtain the following nondimensional volume flow rate

Q̂(t̂) =
1

−12 + 2W2
0 + 12W2

0We

[
− 3 exp(−t̂)

+ exp
( −6t̂

W2
0 + 6W2

0We

)(9 − 2W2
0 − 9W2

0We

WeW2
0 − 1

)]
. (42)

In fig.3 we illustrate the behavior of the nine-directors solution versus the exact 3D
solution, for a fixed Womersley number and different values of the Weissenberg
number. The solutions show a small deviation for short times and approach asymp-
totically when time increases. Several numerical tests have also been performed for
other Womersley numbers showing similar results.

4 Conclusion

The Cosserat nine-director theory applied to the axisymmetric unsteady flow
behavior of a second order fluid in a straight tube, with uniform circular cross-
section, has been evaluated by comparing its solution with the 3D exact solution
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Figure 3: Volume flow rate with pressure gradient is falling exponentially with
time for different values of Weissenberg number, with fixed Womers-
ley number (W0 = 0.5): nine-directors solution (42) (dotted line) and
exact 3D solution (41) (dark line).

for unsteady flows, given by Soundalgekar [15]. For fixed Womersley number,
when the pressure gradient rises exponentially with time, both solutions have the
same qualitative behavior, but show a large deviation for increasing time. However,
when the pressure gradient is falling exponentially with time, the solutions show
a small deviation for short times and approach asymptotically in time. One of the
important extensions of this work is the application of the Cosserat 1D theory to
non-Newtonian second order fluids in a straight tube with non-constant radius. A
more detailed discussion of this issue can be found in [1].
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