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Abstract

Numerical approaches for the coagulation equation with source and removal terms,
and kernels that are bounded independently of the particle size, are investigated. A
few classes of exact solutions are provided.
Keywords: coagulation, polymers, exact solution, source, removal, numerical
solution.

1 Introduction

There is considerable literature on the mathematical theory of coagulation, deter-
ministic and stochastic, discrete and continuous, beginning with the pioneering
work of Smoluchowski in 1917 on modelling binary coalescence of particles. For
a very comprehensive survey of work up to 1970, including applications, different
derivations of the equation from physical assumptions, and discrete versions of the
equation, see Drake [1]. The pioneering works of Melzak [2] (on cloud formation)
include some of the earliest applications of the theory, and more applications can
be found in Drake [1], Lee [3], Krivitsky [4].

The presence of external particle sources, and the removal of particles from
the system, however, has not received a great deal of mathematical attention, the
work of Simons [5] being a notable recent exception. In Shirvani and Van Roes-
sel [6], the discrete version with constant kernel and source terms is investigated.
Laurençot [7] and Norris [8] are two comprehensive recent studies of coagula-
tion/fragmentation for unbounded kernels (but without source and removal effects).

An example of application to the coagulation equation is in the manufacturing of
aluminium alloys. Here, molten metal is kept in a holding furnace for several hours
while particles of titanium diboride are added for further solidification and casting.

Advances in Fluid Mechanics VI  351

doi:10.2495/AFM06035

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



During this process these foreign particles can agglomerate and be lost from the
melt by attachment to the furnace walls, thus jeopardizing the desired properties of
the alloy, and increasing manufacturing costs (see, e.g. Wattis et al [9]). Although
there have been significant studies regarding the size distribution in molten alu-
minum, still not much is known about the kinetics of the coagulation in this sys-
tem. This is an example of an industrial process where one may wish to increase
or modify the number of particles of a particular size. The only way to achieve
this would be by the introduction or removal of particles of some prescribed size
to enable the coagulation process to arrive at some desired limiting state.

The equation being investigated in this paper is

∂u

∂t
(x, t) =

1
2

∫ x

0

K(x− y, y, t)u(x− y, t)u(y, t) dy

− u(x, t)
∫ ∞

0

K(x, y, t)u(y, t) dy + g(x, t) − r(x, t)u(x, t) (1)

subject to the initial condition

u(x, 0) = u0(x) ≥ 0. (2)

For a detailed description of the terms in eqn. (1) see for example Drake [1] and
Melzak [2]. In this paper, the coagulation kernel K is assumed to be bounded (for
the precise mathematical form of these assumptions see Calin et al [10]). Bounded
kernels are of fundamental importance both practically as well as theoretically (for
investigating unbounded kernels, using the method of truncation). They were first
investigated by Melzak [2] in the case where no source term is present.

The source g is the rate of addition of new particles to the system, and r deter-
mines the rate of removal of particles from the system. For physical reasons, the
source and removal terms are assumed to be non-negative. None of the functions
K, g, r is assumed to be continuous.

In this article we provide information about the numerical approaches to the
solution of (1, 2), and comment on how the solutions depend on factors such as
the kernel K or the source term g (see Section 2). The two most reliable methods
(collocation and adaptive power series) are described in some detail. In Section 3
we comment on explicit solutions for particular choices of K and g (closed-form
solutions cannot be expected to exist in the general case).

2 Numerical results

In applications (industrial or otherwise), even the kernel K may not be known
analytically, and the question of finding a reliable numerical solution to (1, 2)
becomes important. There are two distinct problems here.

One is the question of computing the values of u(x, t) for a bounded, pre-
determined range of values 0 ≤ x ≤ X and 0 ≤ t ≤ T . This is the correct setting
in many industrial problems, where the physical limitsX on particle size and T on
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reaction time arise naturally. In such cases we may, if desired, find constants a, b, c
such that the change of variables

x = ax∗, t = bt∗, u = cu∗,

transforms (1, 2) into an analogous equation with the same K , but with 0 ≤
x∗, t∗ ≤ 1 (or any other finite upper limits; the modification is in u0, g, r being
multiplied by various constants). In other words, in this type of problem it is legit-
imate to confine x and t to a pre-determined range of values.

The other problem (which we shall not discuss here) typically involves a change
of variables t∗ = ψ(t), the function ψ being chosen in such a way that the
entire interval 0 ≤ t < ∞ corresponds to 0 ≤ t∗ < 1; a popular choice is

t∗ =
[∫ ∞

0
(u0(x) − u(x, t))dx

]
/
[∫ ∞

0
u0(x) dx

]
. This is most suitable for study-

ing the long-time properties of u(x, t), since t→ ∞ corresponds to t∗ → 1−. The
method, however, appears to be less reliable numerically for bounded ranges of
the values of t. In recent years, several numerical studies have been devoted to (1),
(see, e.g. Filbet and Laurençot [12], Krivitsky [4], Lee [3]).

Our numerical results are presented for 0 ≤ x ≤ 5 and 0 ≤ t ≤ 1 following the
comments at the beginning of this section. Quite a few numerical schemes were
looked at, and the two methods giving the most accurate results (when tested in
the cases where exact solutions are known) were found to be the weighted residual
method (collocation method) and the method of power series at successive points
(the adaptive PS). A description of the methods follows.

One of the more reliable methods of obtaining numerical solutions to (1) turns
out to be the use of power series. If K is independent of time, and we have

u(x, t) =
∞∑

i=0

γi(x)ti, g(x, t) =
∞∑

i=0

δi(x)ti

for some interval of values of x and t, then substitution into (1) (again with r = 0)
evidently leads to γ0(x) = u0(x), and for n ≥ 0,

(n+ 1)γn+1(x) = δn(x) +
1
2

∑
i+j=n

∫ x

0

K(y, x− y)γi(y)γj(x− y)dy

−
∑

i+j=n

γi(x)
∫ ∞

0

K(x, y)γj(y)dy (3)

The question of the convergence of the series
∑∞

i=0 γi(x)ti is a very interesting
one, not least because there is more than one sense in which the series can con-
verge. The question of convergence and an example of its use will be discussed in
Calin et al [10]. For additional comments on the method of power series expansions
in terms of the small parameter t∗ = ψ(t), see Martynov and Bakanov [11]. They
comment that, for certain kernels, using 10 terms in the series gave reasonable
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results only for t∗x ≤ 2. This is only practical for the initial stages of the evolving
spectrum. Drake [1] suggests the use of power series combined with asymptotic
methods for obtaining global numerical solutions.

In using a partial sum u(x, t) ∼ ∑m
i=0 γi(x)ti for relatively large times t, a mod-

ification is found to be useful. Let δ > 0 be small, and suppose we want to find
the value of u(x, t) at t = nδ for some large n. Beginning with γ0 = u0, compute
γ1, . . . , γm from (3), and then obtain u(x, δ) ∼ u(1)(x) =

∑m
i=0 γi(x)δi. How-

ever, to compute u(x, 2δ), it is better to start with a new γ
(2)
0 = u(1), re-compute

the corresponding γ(2)
1 , . . . , γ

(2)
m from (3), and then use u(x, 2δ) ∼ u(2)(x) =∑m

i=0 γ
(2)
i (x)δi (this is tantamount to computing the Taylor series at t = δ, which

is in turn equivalent to shifting the origin of time to t = δ, and then solving the
initial-value problem). Proceeding in this way, the numerical results were found
to be much more precise than when a single series

∑m
i=0 γi(x)ti was used for

increasingly larger values of t.
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Figure 1: Plot of the numerical solution uh(x, 1) using the collocation and the
adaptive power series methods and analytical solution u(x, 1).

The version of the collocation method used here is the one suggested in
Sandu [13]. Taking the collocation points to be the same as the nodal points, the
integral terms of the coagulation equation were evaluated by using Gaussian numer-
ical quadrature. Having performed the pointwise evaluation of the terms of the
coagulation equation at the nodal points, the original partial integro-differential
equation is transformed into a set of ordinary differential equations, where the
dependent variables are at the same points. This system was then solved by the
semi-implicit Euler for the time-discretization. Our experiments showed excellent
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accuracy even with piecewise-linear elements and with a small number of size
bins.

Even though the collocation method requires integration only at the nodal points
and seems to have good accuracy even with linear elements, computationally
speaking it is an expensive method. For instance, using 31 bins yields a maxi-
mum error of 1.67 × 10−3 with the collocation method, and a maximum error of
5× 10−3 for the adaptive power series method (with terms up to and including t2)
in the example presented below (the errors were found to be of a similar order of
magnitude in other examples).

Our conclusion from repeated testing is that, for examining the qualitative
behaviour of the solutions, the adaptive power series (even with as few as three
terms) is quite accurate, while for more precise numerical solutions, the colloca-
tion method is preferable.

Letting uh denote the numerical solution, Figure 1 shows the graph of uh(x, 1)
for the case K = 1, g = 0, and u0(x) = e−x. The exact solution u(x, t) =
(1 + t/2)−2e−2x/(2+t) is obtained in Example 3.1 (with η(t) = 0 in the notation
of that example).
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Figure 2: K(x, y) = 1/(1 + x+ y), g(x, t) = e−x, u(x, 0) = e−(x−1)2 .

The above picture shows the propagation of an initial global maximum through
time. The adaptive power series method was used in this and subsequent graphs.
Longer time periods can be investigated by a suitable change of variables as indi-
cated earlier in this section, but result in no qualitative change in behaviour. No
analytical solution is known in general for this kernel.
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Figure 3: The graph of the numerical solution uh(x, t) at times t =
0, 0.25, 0.5, 0.75, 1 assuming the initial condition u(x, 0) = e− sin x +
e−(x−1)2 has two maxima and K(x, y) = 1/(1 + x + y), g(x, t) =
e−x.
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Figure 4: K(x, y) = 1/(1 + x+ y), g(x, t) = e−x, u(x, 0) = 0.

The graph in Figure 4 shows the influence of the source term on the solution.
The solution increases from its initial value of u0(x) = 0. The series of graphs
in Figure 4 also indicates the fact that the kernel K exerts a relatively small and
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transient influence on the form of the solutions, with the initial conditions u0 and
the source term g being the more dominant factors.

Our next example (Figure 5) is that of another intractable kernel, K(x, y) =
e−(x2+y2−1)2 = e−(r2−1)2 (in polar coordinates). Observe that the maxima of
K initially appear in the solution before being smoothed out by the coagulation
process.
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Figure 5: K(x, y) = e−(x2+y2−1)2 , g(x, t) = e−x, u(x, 0) = e−x.

3 A few examples of exact solutions for (1)

In this section we look at exact solutions to (1). For more examples of exact, formal
and asymptotic solutions see Calin et al [10]. It is worth mentioning that no closed-
form solution of (1) is known when K = 0 outside a bounded interval (except in
trivial cases).
Example 3.1 Our first example is an explicit solution to (1). Assume that K ≡ 1.
Let η(t) be a non-decreasing, non-negative function for all t ≥ 0, such that
η(0) = 0. Set α(t) = 2/[2 +

∫ t

0
eη(s) ds]. If the source term is g(x, t) =

η′(t)α2(t)eη(t)−xα(t) and the initial condition is u0(x) = e−x, then it can be
verified by a direct substitution that u(x, t) = α2(t)eη(t)−xα(t) is the solution of
(1). �

Example 3.2 The next example shows that, in general, separable, non-negative
solutions cannot be expected to exist for all x. To see this, suppose u(x, t) =
u0(x)β(t) for (x, t) ∈ [0, N ] × [0,∞) for some N > 0, where β(0) = 1. Substi-
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tuting into (1) with r = 0 and re-arranging, we find that

g

βu
=
β′

β2
+

∫ N

0

K(x, y)u0(y)dy − 1
2

∫ x

0

K(y, x− y)u0(y)u0(x− y)
u0(x)

dy.

Now let

p(N) = inf
x∈[0,N ]

[∫ N

0

K(x, y)u0(y)dy − 1
2

∫ x

0

K(y, x− y)u0(y)u0(x− y)
u0(x)

dy
]
.

Then of course
g

βu
≥ β′

β2
+ p(N).

If p(N) ≥ 0, then the most general function β for which the right-hand side of the
above equation remains non-negative is

β(t) =
1

1 + p(N)t− η(t)

where η is any non-decreasing function of t such that η(0) = 0 and η(t) < 1 +
p(N)t for all t. The simplest choice is η(t) = 0 for all t. In order for a separable
non-negative solution to exist for all x ≥ 0, we require that limN→∞ p(N) ≥ 0.
We do not know of any examples (even with K = 1) where the above condition
holds (the limit is −∞ in the examples we have looked at). �
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[12] Filbet, F. & Laurençot, P., Numerical simulation of the Smoluchowski coag-
ulation equation, SIAM J. Sci. Comput., 25, pp. 2004-2028, 2004.

[13] Sandu, A., A framework for the numerical treatment of aerosol dynamics,
Applied Numerical Mathematics, 45, pp. 475-497, 2003.

Advances in Fluid Mechanics VI  359

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 




