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Abstract

Three viscous flow problems relevant to fuel cell modeling are considered with
the lattice Boltzmann approach. The first problem is a 3D viscous flow through
a section of serpentine channel and the second is a 2D channel filled or partially
filled with a porous medium. In the first case, attention is given to the implementa-
tion details such as inlet-outlet boundary conditions, nonuniform grid, and forcing.
In the second case, the effects of multiple time scales and interface between the
porous medium and clear channel are considered. In the third problem, these tech-
niques are combined to simulate flow in a serpentine channel with GDL. Results
are compared with other studies based on Navier-Stokes CFD and experimental
observations.
Keywords: lattice Boltzmann approach, simulation, fuel cells, serpentine channel,
porous medium, pressure loss.

1 Introduction

Fuel cells are electrochemical reactors generating electricity directly from oxida-
tion reactions of fuels. Due to their high efficiency (typically twice of the energy
conversion efficiency of internal combustion engines), near-zero emissions, low
noise, and portability, fuel cells are being considered as a potentially viable energy-
conversion device for mobile, stationary, and portable power. The low operation
temperature of the proton-exchange membrane fuel cell (PEMFC) makes it a pre-
ferred fuel-cell type for automotive applications. A PEMFC unit consists of two
thin, porous electrodes (an anode and a cathode) separated by a membrane-
electrode assembly. Reactants (e.g., hydrogen and air) are brought into the cell
through flow distribution channels (Fig. 1(a)). Computational models of increas-
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Figure 1: (a) Sketch of serpentine flow channels in PEM fuel cell; (b) A section of
the channel being modeled in section 2; (c) A section of the channel with
GDL being modeled in section 4.

ing complexity are currently being developed to better understand issues related
to the performance of PEMFC, such as pressure loss and temperature distribution
in the flow channels, species transport through porous gas diffusion layers (GDL),
and water management on the cathode side. Wang [1] provides a review of recent
modeling efforts using traditional computational fluid dynamics (CFD) based on
macroscopic conservation equations.

In this paper we explore the use of lattice Boltzmann (LB) approach as a mod-
eling tool for predicting fluid flows relevant to PEMFC. The LB approach is based
on a kinetic formulation and could have certain advantages over the traditional
CFD [2]. While LB models capable of addressing thermal flows, flows through
porous media, multiphase flows, electro-osmotic flows, and contact line, etc., have
been proposed in recent years, two general aspects remain to be studied before
they can be applied to fuel cell modeling. The first aspect concerns the accuracy
and reliability of these models for practical applications. Since these models have
typically only been tested for idealized problems, their applications to PEMFC
flow problems need to be critically examined and different possible LB models be
compared. The second aspect concerns a variety of implementation issues when
dealing with practical applications, such as nonuniform grid, forcing implementa-
tion, boundary conditions, and porous-medium interface.

2 Flow through a serpentine channel without GDL

As a first example, we investigate the pressure distribution and flow pattern in a
section of serpentine channel over a range of Reynolds numbers encountered in
PEMFC. The channel has a square cross section of width W and a side length L
(Fig. 1(b)). As a first step, we consider isothermal laminar flow and neglect the flow
into the GDL so that the back wall is treated as a no-slip wall. This similar flow
was studied recently by Matharudrayya et al. [3] using a traditional finite-volume
CFD code and by Martin et al. [4] using particle imaging velocimetry (PIV).
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The LB equation for the distribution function (DF) fi of the particle with veloc-
ity ei

fi(x + eiδt, t+ δt) − fi(x, t) = −1
τ

[
fi(x, t) − f

(eq)
i (x, t)

]
+ ψi(x, t) (1)

is solved with a prescribed forcing field ψi designed to model the pressure differ-
ence between the inlet and the outlet, so that a periodic boundary condition can still
be applied to fi between the inlet and outlet. This minimizes the density fluctua-
tions associated with fi which could otherwise be significant considering the large
L/W ratio here and the augmented pressure loss through the bend. The D3Q19
model is used with the following equilibrium distribution function

f
(eq)
i (x, t) = ωiρ

[
1 +

ei · u
c2s

+
uu : (eiei − c2sI)

2c4s

]
, (2)

where ωi is the weight and the sound speed cs is 1/
√

3.
Two different methods of specifying the forcing term were tested. The first

method specifies ψi and macroscopic variables as

ψi(x, t) = ωiei · F/c2s, ρ =
∑

i

fi, ρu =
∑

i

fiei, p = ρc2s + p0(x) (3)

where ρ, u, and p are the fluid density, velocity, and pressure, respectively. The
macroscopic force field is defined as F = (0, A(1 − y/L1), 0) for the left leg of
the channel and F = (0,−A(1 − y/L1), 0) for the right leg, with L1 = L −W .
In the bend region, F = 0. This force field amounts to an auxiliary pressure field
of p0(x) = A(L1 − y)2/(2L1) in the left leg and p0(x) = −A(L1 − y)2/(2L1)
in the right leg and a total pressure difference of AL1 between the inlet and outlet
(the driving force for the flow). The coefficient A was set to 8ρνv0/W 2, where
the kinematic viscosity is related to the relaxation time as ν ≡ (τ − 0.5)c2sδt
and v0 is a velocity scale (of similar magnitude as the mean flow speed u0). Guo
et al. [5] showed that the forcing term in the above formulation introduces some
lattice effects to the Navier-Stokes equation. They were able to remove the lattice
effects by modifying the definitions of ψi and u [5]. For the current problem, we
found, however, that the two methods gave almost identical results.

A nonuniform mesh along the y−direction (Fig. 1(b)) is necessary for com-
putational efficiency. We have developed a Lagrangian interpolation method to
compute DF at a grid point from the DFs on a shifted grid defined by the stream-
ing step. The method generalizes the interpolation-supplemented LB method of
He et al. [6] and is easier to implement than the Taylor series expansion and least
squares-based LB method of Shu et al. [7]. The walls are located in the middle
of lattice links so a second-order accuracy is achieved with a simple bounce-back
algorithm.

Fig. 2 shows a typical pressure distribution along the centerline of the channel.
If the channel is made very long (L >> W ), the pressure should change linearly
with distance away from the bend region at both the inlet and outlet, with a same
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Figure 2: The pressure as a function of the distance s along the centerline of the
channel when Re = 127.

slope. This slope away from the bend can be used to define a friction factor for
a straight channel (i.e., f = W∆p/(Lρu2

0/2)) and the results are shown in Fig.
3(a) as a function of flow Reynolds number Re. This friction factor can be well
modeled by the friction factor in a circular pipe (i.e., f = 64/Re) with diameter
defined as D = 2W/

√
π, namely, diameter corresponding to same cross-sectional

area. The deviation at large Re could be due to the influence of the bend since the
value of L used (L = 22W ) is not long enough.

f(Re)

Re

∆LB/W

Re

Figure 3: (a) The friction factor for the straight portion of the channel away from
the bend. (b) The augmented loss due to the bend measured as the equiv-
alent length of a straight channel.

A finite jump in pressure due to the bend exists, as indicated by the vertical
distance between the two thin parallel lines in Fig. 2. This is referred to as the
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bend pressure loss. The ratio of this jump to the slope away from the bend region
defines a normalized, equivalent length for the bend pressure loss, ∆LB/W . This
equivalent length is shown in Fig. 3(b) as a function of Re. Of importance is that
this length increases quickly with Re to values comparable to the actual single-
path length in a typical PEMFC, implying that the bend pressure loss must be
considered in fuel cell flow modeling. The slight negative value at the lowest Re
is due to the fact that the flow can make 180-degree turn along the inner bend at
such low Re.

Finally, we found that the flow in the bend region becomes unstable and small-
scale vortices form at Re ≈ 1000. To our knowledge, no accurate simulations for
this Re range for a serpentine channel were made previously. Further analysis of
this Re dependence will be reported in detail in a separate paper.

3 Flow through a channel filled or partially filled with porous
medium

This section is motivated by the need to consider the interface between porous
medium and flow channel in PEMFC modeling. We first consider flow in a 2D
channel filled with porous medium of given porosity ε and permeability K . The
macroscopic variables averaged over a representative elementary volume (REV) [8,
9] are considered and they are governed by the following momentum equation
incorporating a Brinkman-extended Darcy law

∂u
∂t

+ (u · ∇)
(u
ε

)
=−1
ρ
∇(εp) + νe∇2u + F

with F = − εν
K

u − εFε√
K

|u|u + εG,
(4)

where the REV-averaged velocity u is assumed to be divergence-free, ν is fluid
viscosity, νe is an effective viscosity, G represents the driving force for the flow.
The geometric factorFε depends on the porosity and the microscopic configuration
of porous medium (for details, see [8, 9]). This approach recovers the usual Navier-
Stokes equation if ε→ 1.

An LB model for the above macroscopic partial differential equation has been
rigorously derived by Guo and Zhao [9]. The LB equation is identical to Eq. (1),
but with feq

i and ψi modified as

f
(eq)
i = ωiρ

[
1 +

ei · u
c2s

+
uu : (eiei − c2sI)

2εc4s

]
, (5)

ψi = ωi

(
1 − 1

2τ

) [
ei ·F
c2s

+
uF : (eiei − c2sI)

εc4s

]
. (6)

We first apply the above model to a 2D channel of width H filled with porous
medium. The flow is initially at rest and is driven by a constant pressure gradient
G along the flow direction. In this case, the unidirectional transient flow subjected

Advances in Fluid Mechanics VI  291

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



to the boundary conditions u(y = 0, t) = u(y = H, t) = 0 can be solved analyti-
cally, giving

u(y, t) =
GK

ν

{
1 − cosh[r(y − 0.5H)]

cosh[0.5rH ]

}
−

∞∑
k=1,3,5,...

4GK
ν

(πk)2

(πk)2 + (rH)2

× sin
πky

H
exp

{
− [

(πk)2 + (rH)2
] νet

H2

}
, (7)

where r ≡ √
νε/(νeK). The analytical solution implies that there are two time

scales in this problem, a diffusion time scale due to the channel walls T1 ≡
H2/(π2νe) and a diffusion time scale within the porous medium T2 ≡ K/(εν).
The ratio of the two time scales T2/T1 is equal to π2Da/ε, which can be very
small if the permeability is small. Here the Darcy number is defined as K/H2.
We find that in the implementation of the above LB scheme, it is necessary to
use a very small Darcy velocity or a large H to ensure that both T1 and T2 are
such larger than one. Otherwise, an apparent slip may be present near the walls,
regardless whether the midway bounce-back or the nonequilibrium extrapolation
method [10] was used on the walls. This slip disappears and the analytical solution
can be precisely recovered when T1 >> 1 and T2 >> 1. A permissible lower
bound for the time scales is found to be about 50 lattice time units.

We then simulated flow in a channel partially filled with porous medium so
there is an interface inside the channel. The velocity varies continuously across the
interface only when a very small Dracy velocity was used, for the reason indicated
above. Two different treatments near the interface were tested. The first method
places the interface in between the lattice nodes so that only the streaming step
lead to exchanges of DF between two sides of the interface. The second method
treats the interface as a boundary using the nonequilibrium extrapolation method,
with the density and velocity taken as the average value from the two neighboring
lattice points on the two sides of the interface. The results from the two treatments
are almost identical. The results are also compared with the experimental data
of Gupte and Advani [11]. The discrepancy in the clear channel region near the
interface may be caused by the fact that the interface is not sharply defined in
the experiment. Further investigation is underway to understand the origin of this
discrepancy.

4 Flow through a serpentine channel with GDL

In this section, we combine the LB models discussed above to simulate fluid flow
through a serpentine channel with GDL. A similar flow problem was recently
studied by Pharoah [12] using a commercial, Navier-Stokes package (i.e., Fluent).
Experimental measurements of fluid flow with the similar setting were performed
by Feser [13].

For computational efficiency, a minimum periodic domain (see Fig 1(c)) with
0 ≤ x ≤ 2W, 0 ≤ y ≤ L, 0 ≤ z ≤ (t + W ) was considered, following the
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Figure 4: Velocity profile in a channel partially filled with porous medium. Param-
eters are: ε = 0.07, Re = 0.107, Kc/K1 = 16.634, and Da =
5.611e− 5. Only a part of the channel is shown. The interface is located
at y = 0.

analytical work of Feser [13]. Here L is the total length of the fuel cell, W is the
width of the square flow channel, and t is the height of the GDL. The domain
covers half of a complete serpentine loop. The inlet section at x = 0 consists of
the cross section of the channel and the full section of GDL layer at the middle
of a bend. The outlet is a cut through the middle of the immediate, opposite bend.
The periodic boundary condition is

u(0, y, z) = u(2W,L− y, z), for 0 ≤ y ≤ L and 0 ≤ z ≤ (t+W ). (8)

In our simulations, we assumed that L/W = 38, t/W = 1/3, and W is 36 lattice
units. A constant forcing per unit fluid mass of magnitudeF0 = 8u0ν(L+W )/W 3

is applied in the x direction to drive the flow in the LB equation. The forcing is
added back when defining the macroscopic pressure field, namely, p ≡ c2s

∑
fi +

ρF0(2W − x).
The results are compared with those of Pharoah [12] in Table 1. Note that

Pharoah [12] used L/W = 40 and t/W = 0.25. The symbols in the table are:
Re is the Reynolds number based on the total volumetric flow rate Q and W ,ReC

is the Reynolds number based on the average velocity at the inlet channel and W ,
ReGDL is the Reynolds number based on the average velocity at the GDL inlet
and t, QC is the volumetric flow rate through the inlet channel only, and the pres-
sure drop was normalized by ρ(Q/W 2)2 or equivalently byRe2ρ(ν/W )2. The air
density and viscosity in Pharoah [12] are assumed to be 1 kg/m3 and 0.17 cm2/s,
respectively. Several observations can be made: (1) the percentage of fluid flux
through the channel decreases quickly with the Darcy number (Da = K/W 2)
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Re ReC ReGDL Da QC/Q |∆p̃|
Run1 257.0 224.6 0.85 10−5 87.4% 9.46
Run2 572.1 475.5 2.53 10−5 83.2% 5.74
Run3 509.8 227.4 7.43 10−4 44.6% 2.40
Run4 1624 268.1 35.7 10−3 16.5% 0.24
Pharoah (2005) 200.0 10−5 ∼90% ∼ 10.9
Pharoah (2005) 400.0 10−5 ∼87% ∼ 6.81
Pharoah (2005) 400.0 10−4 ∼50% ∼ 3.03
Pharoah (2005) 400.0 10−3 ∼22% ∼ 0.54

<u(x=0,y,GDL)>
uC

y/L

Figure 5: The z-averaged, x-component velocity through the middle of the GDL
layer (i.e., x=0).

when 10−5 ≤ Da ≤ 10−3; (2) the percentage of fluid flux through the chan-
nel decreases slightly with flow Reynolds number, (3) both the pressure drop
and the percentage of flow in channel agree reasonably well with the results of
Pharoah [12], and finally (4) since our flow Reynolds number is higher, the per-
centage of flow in channel is lower than the values of Pharoah [12]. It is possible
to match exactly the flow Reynolds numbers by adjusting the magnitude of u0

appeared in the forcing F0.
The vertically averaged, x-component velocity through the DGL at x = 0 is

shown in Fig. 5 for the same four runs shown in table 1. In general, the velocity
increases with y since the pressure difference on the two neighbouring channels
above the GDL increases. At large Da, the flows through the channel and GDL
are strongly coupled so that the convection velocity in GDL is strongly affected by
the channel bends.

294  Advances in Fluid Mechanics VI

Table 1: Flow partition and pressure drop in a serpentine channel with GDL.

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



Figure 6: A snapshot of the quasi-steady velocity field in the x − z plance, at a y
location of one W before the exit bend. The left panel is from run4 and
the right panel from PIV study of Feser [13].

Finally, the velocity field through an x−z plane near the exit bend (y = L−2W )
is compared with the PIV results of Feser [13]. The velocity is normalized by the
average velocity uC through the channel inlet. A strong convection flow through
GDL generates secondary flows in the channel. This secondary flow differs from
the self-generated secondary flow due to channel bends.

5 Conclusions

Three flow problems relevant to PEMFC are simulated with the LB approach. A
3D viscous flow through a section of serpentine channel without GDL was simu-
lated and shown to depend sensitively on the flow Reynolds number. The pressure
distribution along both the straight portion and bend region of the channel can be
quantitatively modeled. We also demonstrate that flow through a porous medium
with an interface can be treated with the LB approach, provided that the exis-
tence of multiple macroscopic time scales is taken into consideration. Finally, 3D
flows through a serpentine channel with GDL were considered and it is shown that
results on pressure drop and flow convection through GDL agree well with other
Navier-Stokes CFD and PIV results.
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