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Abstract

A large eddy simulation using velocity-vorticity formulation of the incompressible
Navier-Stokes equations in combination with the turbulent heat transfer equation
is proposed for the solution of the turbulent natural convection drive flow in a 1:4
enclosure. The system of equations is closed by an enstrophy based subgrid scale
model. The Prandtl turbulent number is used to estimate turbulent diffusion in the
heat transfer equation. The boundary element method is used to solve the kine-
matics equation and estimate the boundary vorticity values. The vorticity transport
equation is solved by the finite element method. The numerical example investi-
gated in the paper is the onset of a turbulent flow regime occurring at high Rayleigh
number values (Ra = 107−1010). The formation of vortices in the boundary layer
is observed, along with buoyancy driven diffusive convective transport. Quantita-
tive comparison with the laminar flow model and the work of other authors is also
presented in terms of Nusselt number value oscillations.

1 Introduction

Over the last few decades two-dimensional buoyancy driven flows have been inves-
tigated thoroughly by several authors. Natural convection in a rectangular enclo-
sure is present in many industrial applications, such as the cooling of electronic
circuitry, nuclear reactor insulation and ventilation of rooms.

A benchmark solution for two-dimensional flow of Boussinesq fluid in a square
differentially heated enclosure was presented by De Vahl Davies [1]. They used
the stream function-vorticity formulation. 2D DNS was preformed by Xin and Le
Quéré [2] for an enclosure with aspect ratio 4 up to Rayleigh number based on
the enclosure height 1010 using expansions in series of Chebyshev polynomials.
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Salat et al. [3] compared the results of modelling turbulent natural convection at
high Rayleigh number between an experiment, 2D LES, 2D DNS and 3D LES
computations. They reported that only minor differences are observed between
the 2D and 3D results and concluded that a 2D calculation could be used as a
first approximation for general flow structure in cavities at Rayleigh number about
1010.

In the present work we have studied the onset of natural convection in a 1 : 4 dif-
ferentially heated enclosure within the incompressible Boussinesq approximation.
Transition from two-dimensional steady laminar flow at enclosure width based
Rayleigh number Ra = 106 via oscillatory motion at Ra = 107, Ra = 108 to
chaotic (turbulent) fluid flow at 109, 1010 is simulated. The planar Large Eddy
Simulation (LES) is used for velocity-vorticity formulation of the incompressible
Navier-Stokes equations. The velocity vorticity formulation of the Navier-Stokes
equations in combination with the boundary element method is a promising con-
cept for numerical solution of fluid flow problems. Solution of the kinematics
equation is obtained by the boundary element method (BEM) and provides bound-
ary vorticity values and hence a well posed vorticity transfer equation. We propose
the usage of BEM because of its unique advantage for solving the boundary. Unfor-
tunately, solution of a Poisson type equation with BEM requires huge integral
matrices, which poses computer storage problems and limits the maximum num-
ber of nodes. We have used a wavelet transform technique proposed by Ravnik et
al. [4] to compress the matrices of integrals and thus decrease the storage require-
ments. The LES based vorticity transport equation is solved by the finite element
method (FEM).

2 �v − �ω LES

Incompressible viscous fluid flow within the Boussinesq approximation is gov-
erned by the following system of equations. Mass conservation can be stated by

�∇ · �v = 0, (1)

while conservation of momentum is

∂�v

∂t
+ (�v · �∇)�v = − Ra

PrRe2
T�g − 1

Eu
�∇p +

1
Re

∇2�v, (2)

and the energy equation is

∂T

∂t
+ (�v · �∇)T =

1
RePr

∇2T. (3)

The system is fully defined by specifying the Euler, Reynolds, Prandtl and Rayleigh
numbers. Vorticity is defined by �ω = �∇ × �v and is also divergence free. When
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introducing the velocity vorticity formulation (Škerget et al. [5]) one combines the
velocity and vorticity into the kinematics equation

∇2�v + �∇× �ω = 0, (4)

which connects the velocity and vorticity fields at all points in space and time.
We define the filtering operation of an arbitrary function u(�x, t) with the follow-

ing convolution integral

ū(�x, t) =
∫

Ω

G(�r, �x)u(�x − �r, t)d�r, (5)

where G(�r, �x) stands for the filter kernel, integration encompasses the whole
domain Ω. By choosing a homogenous filter kernel filtering commutes differen-
tiation with respect to coordinate, thus the filtered kinematics equation is

∇2�v + �∇× �ω = ∇2�v + �∇× �ω = 0. (6)

In order to derive the velocity vorticity based LES we will rewrite the transport
equation for momentum (2) into a transport equation for vorticity and filter it. The
advection term (second on the left hand side of (2)) may be rewritten as

(�v · �∇)�v =
1
2

�∇v2 − �v × �ω. (7)

We use (7) in equation (2) and rewrite the last term on the right hand side of (2)
with the aid of the kinematics equation, arriving at

∂�v

∂t
+

1
2

�∇v2 − �v × �ω = − Ra

PrRe2
T�g − 1

Eu
�∇p − 1

Re
∇× �ω. (8)

When a curl of the whole equation (8) is taken, both gradient terms vanish. Thus
pressure is eliminated from the equation. Bearing in mind the vorticity definition,
we have

∂�ω

∂t
− �∇× (�v × �ω) = − Ra

PrRe2
�∇× T�g − 1

Re
�∇×∇× �ω. (9)

When equation (9) is filtered, commutation properties of the homogenous filter are
used to write

∂�ω

∂t
− �∇× (�v × �ω) = − Ra

PrRe2
�∇× T�g − 1

Re
�∇×∇× �ω. (10)

The difference between the unfiltered (9) and the filtered (10) vorticity transport
equation is in the nonlinear advection term. Filter of the vector product of velocity
and vorticity fields is not equal to a vector product of filtered fields. Equation (10)
will be rewritten in a form that is equivalent to the form of (9) with an additional
term, which will account for the contribution of the filtered field. The additional,
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subgrid term will be modelled in such manner, that it will have a dissipative effect.
Therefore we introduce the residual vorticity vector as the difference between the
filter of the vector product of velocity and vorticity fields and a vector product of
filtered fields �τω = �v × �ω − �v × �ω. With this, equation (10) may be rewritten

∂�ω

∂t
− �∇× (�v × �ω) = − Ra

PrRe2
�∇× T�g − 1

Re
�∇×∇× �ω + �∇× �τω. (11)

According to the turbulent vorticity transfer theory of Taylor [6], the subgrid term
�∇ × �τω describes the dissipation of vorticity due to subgrid scales. To derive the
final form of the filtered vorticity transfer equation we make use of �∇× �∇× �ω =
−∇2�ω and �∇× (�v × �ω) = (�ω · �∇)�v − (�v · �∇)�ω:

∂�ω

∂t
+ (�v · �∇)�ω = (�ω · �∇)�v − Ra

PrRe2
�∇× T�g +

1
Re

∇2�ω + �∇× �τω . (12)

The Stokes derivative of vorticity on the right hand side of equation (12) is equal
to the twisting and stretching term, buoyancy, viscous diffusion and the subgrid
term. The equation is nonlinear due to the product of velocity and vorticity, which
are kinematically depended quantities. In two dimensions, only the component of
vorticity that is perpendicular to the plan of flow is nonzero, thus vorticity may be
regarded as a scalar quantity. The vortex twisting and stretching term vanishes is
cases of planar flow. The buoyancy term, which includes the temperature, binds
the vorticity transport equation to the energy equation.

Before filtering of the energy equation (3) we rewrite the advection term with
�∇ · (T�v) = (�v · �∇)T :

∂T

∂t
+ �∇ · (T�v) =

1
RePr

∇2T . (13)

The nonlinear term is rewritten by introducing the residual temperature vector
�τh = T�v − T �v. The final form of the filtered energy equation is

∂T

∂t
+ �∇ · (T �v) =

1
RePr

∇2T − �∇ · �τh. (14)

With an analogy to molecular viscosity, which drains the energy of the flow, we
will describe the residual vectors by introducing subgrid scale viscosity and diffu-
sivity

�τω = −νsgs
�∇× �ω, �τh = αsgs

�∇T . (15)

The subgrid scale viscosity was modelled by the Mansour et al. [7] model, which
is based on the local enstrophy of the large scales

νsgs = (C∆)2
√

�ω · �ω. (16)

The filter width is ∆ = (∆x∆y∆z)
1
3 in 3D and ∆ = (∆x∆y)

1
2 in 2D. In the

vicinity of walls, the model constant C will be damped with Piomelli and/or Van
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Driest damping function. Based on experimental findings on isotropic turbulence,
the subgrid scale viscosity is comparable to subgrid scale diffusivity, their rela-
tionship being close to linear. The turbulent Prandtl number is used to connect the
two: αsgs = νsgs

Prt
.

3 Numerical method

Sufficiently dense meshes must be used in order for the LES simulation to be
successful. BEM requires fully populated matrices of integrals. Their size grows
rapidly with the number of grid points. In order to be able to obtain the solution
we have made the following simplifications: (i) let the flow be planar, vorticity is a
scalar, (ii) we shall use wavelet compressed BEM for the solution of the boundary
with the kinematics equation only and (iii) use FEM for the transport equations.
In the following we shall briefly describe the wavelet compressed BEM and give
the computational algorithm at the end of this section. Detailed derivation and
explanation of the numerical method may be found in Ravnik et al. [8].

Using BEM for the calculation of boundary vorticity values, one arrives at the
following system of linear equations

[DΓ]{ωΓ} = ([C] + [H ]) {vt} + [Ht]{vn} − [DΩ\Γ]{ωΩ\Γ}, (17)

where matrices of integrals [DΓ], [C], [H ] and [Ht] are square, full, non-symmetric
and have number of boundary nodes rows and columns. Although full, the these
matrices do not require a lot of storage, since they are for boundary only. On the
other hand, the matrix [DΩ\Γ] is rectangular and also full and non-symmetric. It
has number of boundary nodes rows and number of internal nodes columns. In
the discretized system of equations it must be multiplied with a vector of internal
vorticity values {ωΩ\Γ} to form the right hand side of the system of equations.

The matrix vector product [DΩ\Γ]{ωΩ\Γ} will be calculated with the aid of
wavelet compression. The matrix will be compressed written in compressed row
storage format and thus require less storage.

Let W be the discrete wavelet transform matrix for vectors of arbitrary length
introduced in Ravnik et al. [4]. Since the product of the wavelet matrix with its
transpose is the identity matrix, we may write

[DΩ\Γ]{ωΩ\Γ} = WT (W [DΩ\Γ]WT︸ ︷︷ ︸
[D

Ω\Γ
W ]

W{ωΩ\Γ}). (18)

The wavelet compressed matrix of integrals [DΩ\Γ
W ] = W [DΩ\Γ]WT is calculated

only once, prior to the start of the iterative process. In absolute sense small matrix
elements are thresholded and compressed row storage format is used for remaining
nonzero elements.

A parallel code has been written to perform the wavelet compression, since the
full matrix does not fit into single computer memory. Clusters of single processor
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nodes have been used. Communication was preformed via MPI. During compres-
sion, multiplication with random test vectors is done to establish the relative error
ε of the matrix vector product.

Without further details, the computational algorithm may be summarised as
follows: Solve kinematics equation for boundary vorticity values using internal
vorticities from previous nonlinear iteration step using wavelet compressed BEM.
Solve the kinematics equation again for domain velocities by FEM, using new
boundary vorticities obtained from BEM in the previous step to form right hand
side vector. Solve the energy equation to obtain the new temperature field by FEM.
Solve vorticity transport equation for domain vorticities by FEM, using the new
velocity field and use boundary vorticities from kinematics as boundary condi-
tions. Use under-relaxation for computing new domain vorticity values and loop
until convergence is achieved.

4 Validation

Using wavelet compression in the numerical algorithm introduces an error. In order
to estimate the largest compression ratio, that does not effect the accuracy of a high
Re computation, we have preformed a standard lid driven cavity benchmark test at
Re = 104. Results were compared with Ghia et al. [9] benchmark. Table 1 gives
different compression rations tested, while Figure 1 presents the results. We have
found, that the solution obtained is virtually identical for ε = 10−6 and ε = 10−5

and differs only slightly for lower relative error values. Therefore, we decided
that the limit ε = 10−5, will be used for compression. The test also showed, that
increasing mesh density enables higher compression for the same accuracy.

Table 1: Wavelet compression of domain integrals matrix on a square mesh with
182 × 180 nine node Lagrange elements. Total number of nodes in the
mesh is 131765. Number of all elements in the matrix is 188699016.

share of relative error

thresholded elements of multiplication ε

0.7652 1.4 · 10−6

0.9217 1.0 · 10−5

0.9761 1.0 · 10−4

0.9870 1.2 · 10−3

5 Differentially heated enclosure

We consider an enclosure with width to height ratio of 1 : 4. The left vertical wall
is heated, the right vertical wall is cooled, both are kept at constant temperatures.
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The Rayleigh number is defined by the temperature difference and the enclosure
width. The top and bottom horizontal walls are adiabatic. The no-slip velocity
boundary condition is employed on all solid walls.
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Figure 1: Comparison of velocity profiles in a lid driven cavity at Re = 104 for dif-
ferent compression ratios with the benchmark solution of Ghia et al. [9].

The enclosure is filed with air (Pr = 0.71), the subgrid scale constant was
C = 0.1, the turbulent Prandtl number was set to Prt = 0.6. Two meshes were
used in simulations: up to Rayleigh number Ra ≤ 109 a mesh with 128×200 nine
node Lagrange elements with approximately 105 nodes and at Rayleigh number
1010 a 170 × 300 mesh with 2 · 105 nodes.

Steady state temperature field for Ra = 106 and averaged temperature fields
at Ra = 107 without subgrid scale model and LES with Piomelli damping for
Ra = 108, Ra = 109 and Ra = 1010 are shown in Figure 2. While at Ra = 106

steady state is reached, at Ra = 107 the boundary layer becomes unstable and
vortices are formed along the top of the hot wall and along the bottom part of the
cold wall. Eddies are transported by convection up the hot wall and down the cold
wall thus mixing the top and bottom parts of the enclosure. In the central part the
temperature field is stratified and the flow virtually steady. The whole flow field is
oscillatory and symmetric. At Ra = 108 the eddies are formed more frequently.
The formation takes place in the top half of the hot wall and in the bottom half of
the cold wall. The stratified central core becomes smaller, but still exists. The flow
field is no longer symmetric (although the initial Ra = 106 flow field was) length
scales of the structures in the flow are becoming smaller. There is no difference
between calculations with and without the subgrid scale model. At Ra = 109

eddies are formed along the whole length of both vertical walls, most of them
being formed at mid height. The central core is now thoroughly mixed and one
can no longer speak of temperature stratification. The flow field includes eddies
of various scales and is non-repeating, irregular and chaotic. At Ra = 1010 the
whole flow field is turbulent. The difference between calculation with and without
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subgrid scale model is evident at this Rayleigh number. Comparing heat transfer
with benchmark proved that the LES simulation give the correct results.

Figure 2: Temperature fields (1(0.05)0): left to right: steady state at Ra = 106,
time averaged field at Ra = 107 without a subgrid scale model, time
averaged LES field with damped subgrid scale model for Ra = 108,
Ra = 109 and Ra = 1010.

The heat transfer through the walls is represented by the average Nusselt num-
ber value, defined for our geometry by Nu = 1

H

∫ H

0
∂T
∂x dy. The Nusselt number

versus time graphs are shown on Figure 3. The average values are compared with
benchmark results of Xin and Le Quéré [2] in Table 2. Very good agreement is
obtained.

6 Conclusions

The velocity vorticity formulation of LES in combination with the wavelet trans-
form based boundary element method presented in this paper shows good potential
for solving turbulent fluid flow problems with the large eddy simulation approach.
Solution of boundary vorticity values with wavelet based BEM provides boundary
conditions for the transport equations, which we are solving by FEM. Using the
wavelet transform with the boundary element method enabled us to use meshes
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Figure 3: Time traces of Nusselt number for: Ra = 107 (upper left), Ra = 108

(upper right), Ra = 109 (lower left) in Ra = 1010 (lower right).

Table 2: Average Nusselt number Nu and correlation comparison with benchmark
DNS results of Xin et al. [2]. Piomelli damped (LESp) as well as Van Dri-
est damped (LESvd) results are presented. (*) For Nu at Ra = 108 and
Ra = 109 Xin’s values were predicted using their Nu/Ra1/4 relation-
ship. (+) Nu prediction using our Nu/Ra1/4 relationship.

Nu Nu/Ra1/4

Ra C = 0 LESp LESvd Xin [2] present Xin [2]

107 12.27 12.3 0.2181 0.2185

3.125 · 107 16.91+ 16.62

108 22.5 22.5 22.56∗ 0.2256

1.56 · 108 25.57+ 25.25 0.2256

109 44.77 43.25 43.67 43.63∗ 0.2432

1010 90.25
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with 2 · 105 nodes. Higher mesh densities will be possible in the near future, as
well as the extension of the code to 3D, by the use of domain decomposition and
parallel computing.

The first author gratefully acknowledges the support of the parallel computer cen-
tres HLRS and CINECA in the framework of the EC-funded HPC-Europa project
under contract number 506079.
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