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Abstract

We study the weakly nonlinear evolution of Faraday waves in a two dimensional
version of a vertically vibrating annular container. In the small viscosity limit, the
evolution of the surface waves is coupled to a non-oscillatory mean flow that devel-
ops in the bulk of the container. A system of equations is derived for the coupled
slow evolution of the spatial phase of the surface wave and the streaming flow.
These equations are numerically integrated to show that the simplest reflection
symmetric steady state (the usual array of counter-rotating eddies below the sur-
face wave) becomes unstable for realistic values of the parameters. The new states
include limit cycles, steadily travelling waves (which are standing in a moving
reference frame), and some more complex attractors. We also consider the effect
of surface contamination, modelled by Marangoni elasticity with insoluble surfac-
tant, in promoting drift instabilities in spatially uniform standing Faraday waves. It
is seen that contamination enhances drift instabilities that lead to various steadily
propagating and (both standing and propagating) oscillatory patterns. In particu-
lar, steadily propagating waves appear to be quite robust, as in the experiment by
Douady et al. (1989).
Keywords: Faraday instability, mean flow, weakly nonlinear analysis, Marangoni
elasticity.

1 Introduction

We consider the parametric excitation of waves at the free surface of a horizon-
tal liquid layer that is being vertically vibrated. If the forcing amplitude exceeds a
threshold value, the system exhibits surface waves that are named after
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Faraday [1]. These waves have attracted a great deal of attention, especially
because of the rich variety of non-linear pattern forming phenomena promoted
by the Faraday instability [2, 3, 4]. Unfortunately, current theoretical approaches
fail to appropriately explain essential issues associated with the behavior beyond
threshold, particularly in the singular limit of small viscosity. The usual nonlinear
amplitude equations used to describe this weakly nonlinear regime are obtained
from a strictly inviscid formulation and corrected a posteriori by adding some lin-
ear dissipation terms [2, 3]. This formulation ignores the presence of the slow non
oscillatory mean flow that is driven by the boundary layers at the container walls
and free surface and, in the case of a monochromatic wave only predicts stand-
ing waves (SW) after onset and fails to reproduce the drifting SWs that have been
observed experimentally in annular containers [5, 6]. The object of the present
paper is precisely to analyze the coupled evolution of the surface waves and the
mean flow.

The remaining of the paper is organized as follows: in §2 we shall present the
systems of equations for the slow time evolution of the surface waves and the mean
flow, derived from a exact formulation based on the full Navier-Stokes equations.
This will be done assuming either a clean free surface and a contaminated one
(surface contamination is likely to be present in water, as in [5], unless care is taken
in the experimental set-up). The relevant patterns obtained for large-time resulting
from the primary bifurcation will be described and discussed in §3, where some
conclusions will also be made.

2 Coupled amplitude-mean flow equations

We consider a horizontal 2-D liquid layer supported by a vertically vibrating plate
(fig.1), and use the container’s depth h and the gravitational time

√
h/g for nondi-

mensionalization. The governing equations are the following

ux + vy = 0, (1)

ut + v(uy − vx) = −qx + C(uxx + uyy), (2)

vt − u(uy − vx) = −qy + C(vxx + vyy), (3)

u = v = 0 at y = −1, (4)

v = ft + ufx, C1/2(ûn + v̂s + κû) = 0,

q − u2 + v2

2
+ 4ω2εf cos(2ωt) − f + Tκ = 2Cv̂n at y = f, (5)

u, v, q and f are L-periodic in x, (6)

where

s =
∫ x

0

√
1 + f2

x dx and κ =
fxx

(1 + f2
x)3/2

(7)

are an arch length parameter and the curvature of the free surface (defined as
y = f ), respectively, and n is a coordinate along the upward unit normal to the
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Figure 1: Sketch of the fluid domain.

free surface; û and v̂ are the tangential and normal velocity components at the free
surface y = f , which are related to the horizontal and vertical components u and
v by

û =
u+ fxv√

1 + f2
x

, v̂ =
v − fxu√

1 + f2
x

. (8)

Equations (1)-(6) formulate the problem assuming a clean free surface, with
no contamination. Nevertheless, surface contamination is likely to be present in
water. The only difference between the clean and contaminated cases is seen in the
boundary condition (5b), whose right hand side was zero for the clean surface and
now accounts for the presence of contaminating surfactants (9), modelled in the
simplest way: the resulting tangential stress includes Marangoni elasticity effects
produced by a variation of surface tension with surfactant concentration

C1/2(ûn + v̂s + κû) = −γζs. (9)

A linear law is assumed for the variation of the surface tension T ∗ with the sur-
factant concentration ζ∗, namely T ∗(ζ∗) = T ∗

0 + (dT ∗/dζ∗0 )(ζ∗ − ζ∗0 ), where the
derivative is calculated at the equilibrium value of the surfactant concentration ζ∗,
denoted as ζ∗0 .

The nondimensional surfactant concentration ζ = (ζ∗ − ζ∗0 )/ζ∗0 is given by the
conservation equation for an insoluble surfactant

ζt + [(1 + ζ)u]s = 0 in 0 < s < sL, ζ(s + sL, t) = ζ(s, t). (10)

Here, sL is the length of the free surface in one period and we are neglecting both
cubic terms and surface diffusion of the surfactant.

Both dimensionless problems, namely (1)-(6) and (1)-(5a),(5c)-(6), (9), (10),
depend on the following nondimensional parameters: the forcing frequency 2ω =
2ω∗√h/g and amplitude ε = ε∗/h, the ratio of viscous to gravitational effects
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C = µ/(ρ
√
gh3) (ρ = density,µ = viscosity), the Bond numberT−1 = ρgh2/T ∗

0

(T ∗
0 = surface tension at equilibrium), the horizontal aspect ratio L = L∗/h

(L∗ =horizontal length of the domain), and only for the contaminated free sur-
face problem, the Marangoni elasticity number γ = ζ∗0 (dT ∗/dζ∗0 )C1/2/(µ

√
gh).

We shall consider small, nearly-resonant solutions at small viscosity and conve-
niently rescaled Marangoni elasticity, i.e.,

|u|+|v|+|q|+|f |+|ζ| � 1, ε� 1, |ω−ω0| � 1, C � 1, γ ∼ 1, (11)

where ω0 is a natural frequency in the inviscid limit (C = 0). The assumption
that C � 1 is reasonable for not too viscous fluids in not too thin layers. The
assumption that γ ∼ 1 is made for the Marangoni elasticity to have a significant
effect both in the damping ratio of the surface waves and in the streaming flow
(see [8] for more details). As explained in [7] and [9], the solution can be expanded
distinguishing between an oscillating part caused by the oscillatory inviscid modes
(with a O(1) frequency and a O(

√
C) decay rate) and a slow non-oscillatory part

generated by the viscous modes (with a O(C) decay rate), which produce the mean
flow, denoted hereinafter by the superscript m. The solution in the bulk region,
outside the boundary layers that appear at the free surface and the bottom plate, is
written as follows

u = U0(y)eiωt[A(t)eikx −B(t)e−ikx] + c.c.+ um(x, y, t) + · · · ,
v = iV0(y)eiωt[A(t)eikx +B(t)e−ikx] + c.c.+ vm(x, y, t) + · · · ,
q = Q0(y)eiωt[A(t)eikx +B(t)e−ikx] + c.c.+ qm(x, y, t) + · · · ,
f = eiωt[A(t)eikx +B(t)e−ikx] + c.c.+ fm(x, t) + · · · ,
ζ = Ξ0e

iωt[A(t)eikx +B(t)e−ikx] + c.c.+ ζm(x, t) + · · · ,

(12)

where c.c stands for the complex conjugate, k = 2mπ/L (with m a positive inte-
ger) is the horizontal wave number and U0, V0 andQ0 are the corresponding invis-
cid eigenfunctions

U0 = −kQ0

ω0
, V0 =

Q0y

ω0
, Q0 =

ω2
0 coshk(y + 1)
k sinh k

, (13)

ω2
0 = k(1 + Tk2) tanh k. (14)

Note that the expansion for the surfactant concentration variable (12e) is only nec-
essary for the contaminated problem, where

Ξ0 = (kω0

√
iω0)/(tanh k(ω0

√
iω0 − ik2γ)) (15)

cannot be obtained in the inviscid approximation. Dependence of the complex
amplitudes A and B on x is ignored for simplicity, see [10] and [11] for a more
complicated analysis including spatial wave modulations. The weakly nonlinear
analysis requires the amplitudes A and B to be small and depend slowly on time
|A′| � |A| � 1, |B′| � |B| � 1.
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If we insert expansions (12a)-(12d) into the governing equations for the clean
free surface case, and (12a)-(12e) into the equations for the contaminated free
surface problem, take into account the boundary layers at the free surface and the
bottom of the container, and apply solvability conditions, the following equations
for the evolution of the complex amplitudes are obtained

A′ = [−d1 − id2 + iα3|A|2 − iα4|B|2 − i
α6

L

∫ 0

−1

∫ L

0

g(y)umdxdy]A + iεα5B̄,

(16)

B′ = [−d1 − id2 + iα3|B|2 − iα4|A|2 + i
α6

L

∫ 0

−1

∫ L

0

g(y)umdxdy]B + iεα5Ā,

(17)

which depend on the mean flow through a non local term. See [7] and [8] for
a detailed derivation of the equations above and for the expressions of the coef-
ficients and the function g(y) in the non contaminated and contaminated case,
respectively.

The solution of equations (16) and (17) always relaxes to a standing wave (|A| =
|B| = R0) of the form

f(x, t) = 4R0 cos(ωt+ φ0) cos[k(x− ψ)] (18)

with constant amplitude R0 (which depends on the amplitude of the applied forc-
ing) and spatial phase ψ(t), which remains coupled to the streaming flow through
the equation

ψ′ =
α6

kL

∫ 0

−1

∫ L

0

g(y)umdxdy. (19)

Ignoring the initial transient, taking into account the last result in expansions (12a)-
(12e), and introducing these expressions in the two cases, we obtain the following
equations for the mean flow outside the two boundary layers

ũx + ṽy = 0, (20)

∂ũ

∂τ
+ ṽ(ũy − ṽx) = −q̃x +Re−1(ũxx + ũyy), (21)

∂ṽ

∂τ
− ũ(ũy − ṽx) = −q̃y +Re−1(ṽxx + ṽyy), (22)

ũ, ṽ and q̃ are x-periodic, of period L = 2mπ/k, (23)

dψ

dτ
=

1
L

∫ 0

−1

∫ L

0

G(y)ũ(x, y, τ)dxdy, G(y) =
2k cosh 2k(y + 1)

sinh 2k
(24)

where the bottom and free surface horizontal velocities are determined from one
of the following additional conditions, either

ũ = − sin[2k(x− ψ)], ṽ = 0 at y = −1, (25)

ũy = 0, ṽ = 0, at y = 0, (26)
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(a) (b)

Figure 2: The contamination parameter Γ. (a) Γ vs. k for T = 7.42 · 10−4 and:
(——) γ = 1, (− − −) γ = 0.1, (− · − · −) γ = 0.01, and (· · · · ·)
γ = 10−3. (b) The maximum value of Γ vs. k for T = 7.42 · 10−4 and
varying γ.

or the clean free surface case, or

ũ = −(1 − Γ) sin[2k(x− ψ)], ṽ = 0 at y = −1, (27)

ũ = −Γ sin[2k(x− ψ)] + ũ0(τ), ṽ = 0,
∫ L

0

ũy dx = 0, at y = 0, (28)

for the contaminated free surface. For convenience, we have rescaled time and
mean flow variables as

τ = ReCt, ũ =
um

ReC
, ṽ =

vm

ReC
, q̃ =

qm

(ReC)2
, (29)

with the effective mean flow Reynolds number defined as follows

Re =
2R2

0

C
(α7 + α8) , (30)

with

α7 =
3ω0k

sinh2 k
, α8 =

ω0k

tanh2 k

(
4γk2

ω0

√
iω0 − iγk2

+ c.c+
3γ2k4

|ω0

√
iω0 − iγk2|2

)
.

(31)

where γ must be substituted by 0 in (31) when considering the clean surface case.
Equations for the clean case (20)-(26), hereinafter referred to as MFClean, depend
on the values of the 3 parameters (Re, k, m), while the contaminated free surface
problem defined by (20)-(24), (27)-(28), hereinafter MFContam, depends on an

218  Advances in Fluid Mechanics VI

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



additional contamination parameter Γ that measures the relative effect of contam-
ination in the generation of the streaming flow

Γ = Γ(k, T, γ) ≡ α8

α7 + α8
, (32)

and is plotted vs. the wavenumber k in figure 2(a) for the indicated values of γ; the
selected value of the inverse of the Bond number, T = 7.42 · 10−4, corresponds to
a 10 cm depth water container. It can be seen that for deep water problems, namely
k > π, the contamination parameter is of the order of 1, even for quite small values
of the Marangoni number γ. The maximum values of Γ are plotted in figure 2(b).

3 Results and conclusions

Problems MFClean and MFContam are both numerically solved to show that for
small values of the effective mean flow Reynolds number Re, the solution relaxes
to the basic standing wave (SW) with ψ′ = 0. The mean flow associated with this
basic SW consists of an array of pairs of steady counterrotating eddies. Examples
are plotted in figure 3(a) for clean free surface and in fig.4(a)-4(c) for contaminated
free surface. These steady solutions are L/2-symmetric and since they are also
reflection symmetric in x, the integral (24) vanishes and the streaming flow does
not affect the surface SW.
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(a) (b)

Figure 3: Streamlines of the streaming flow of MFClean for k = 2.37, L = 2.65
(m = 1) and (a) Re = 260 and (b) Re = 325 (in moving axes x − ψ′τ
with constant drift velocity). Thick vertical lines correspond to the nodes
of the surface waves given by (18).

For the MFClean problem, if Re exceeds a threshold value, indicated in figure
5(a), the basic steady solution becomes unstable always through a Hopf bifurca-
tion and a branch of time periodic solutions (PSW) appears, which produces a time
periodic drift of the SW with no net drift on the free surface. These periodic solu-
tions resemble locally the so called compression modes that have been observed
in annular containers ([5], [6]) and cannot be obtained with the usual amplitude
equations that ignore the coupling with the streaming flow. For some values of k
and L, there are some additional bifurcations to steadily traveling waves (TWs),
which move at a constant speed like the one shown in figure 3(b), and more
complex oscillatory attractors, but these depend strongly on k and L (see [7]
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Figure 4: Streamlines of MFContam, for k = 2.37, L = 2.65 (m = 1), and
(Re,Γ): (a) (200, 0.1), (b) (160, 0.5), (c) (60, 0.9), (d) (200, 0.5), (e)
(200, 0.9) in moving axes ξ = x−ψ′τ with constant drift velocity ψ′ =
0.32 and ũ0 = 0.49, (f) (600, 0.9) in moving axes with constant drift
velocity ψ′ = 0.27 and ũ0 = 0.53.

for more details). However, drift instabilities were quite robust in the experiment of
Douady et al. [5] (Fauve, personal communication, 2003) and the MFclean prob-
lem does not seem to reproduce this feature.

In order to mimic the behavior of tap water (used in the experiment [5]) the
MFContam problem is solved to obtain that the primary instability of the basic
SW (SW(L/2)) depends on the value of the contamination parameter. In figure
5(b) it can be seen that for small values of Γ the instability takes place through a
Hopf bifurcation and for quite small values of Γ the contamination effect seems to
stabilize the basic SWs (note that the critic Reynolds number for the clean case for
the same values of k and L is marked with a large point in the horizontal axe of
figure 5(b)).

This is because the only effect of contamination in this regime on the mean flow
is to replace the free stress boundary condition at the free surface by a no-slip
boundary condition, which reduces the strength of the mean flow. For an inter-
mediate value of Γ a symmetry breaking bifurcation to another type of SW no
longer L/2 symmetric (SW(L)) occurs, see figure 4(d) as an example. For larger
values of the contamination parameter Γ the basic SW(L/2) destabilizes through
a parity breaking bifurcation that leads to TWs (TW(L/2)) whose streamlines for
the mean flow in a moving reference frame are similar to the one plotted in 4(e).
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Figure 5: The primary instability of the basic SW for: (a) MFClean for different
wave numbers k and (b) MFContam, for k = 2.37, L = 2.65 (m = 1).
Figure 5(a): The bifurcation is always a Hopf bifurcation (——) ((−−−)
shows the parity breaking bifurcation that takes place only if the coupling
between the surface wave and the mean flow (24) it is ignored). Figure
5(b): The bifurcation is either a Hopf bifurcation (− · − · −) if 0 < Γ <
0.372, a (L/2)-symmetry breaking bifurcation (−−−) if 0.372 < Γ <
0.584, or a parity breaking bifurcation (——) if 0.584 < Γ < 1.

Note that the mean flow is still L/2-symmetric. In contrast with the clean case,
these TWs appear in a primary bifurcation and are quite robust (remain unchanged
for larger domains and appear for all values of the wave number we have checked).
Thus, contamination effects seem to play an important role in the surface waves
dynamics. For larger values of the Reynolds numberRe, different secondary insta-
bilities are obtained, which include another type of TWs with no L/2-symmetric
mean flow (figure 4(f)), pulsating traveling waves, and even chaotic attractors ([8]).
For all these states that are not steady SW, the coupling with the mean flow is an
essential ingredient that should not be ignored.
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