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Abstract

Surface gravity currents whose flow dynamics are modified by incoming solar radi-
ation are of importance in the study of mechanisms related to the thermal bar in
dimictic lakes as well as the spread of pollutants on the surfaces of reservoirs, lakes
and oceans. We shall present results for such surface flows showing their depen-
dence on various model parameters including the bottom slope, rate of heating and
equation of state. The novel feature of this analysis is to show that the inclusion
of a heat source term leads to the introduction of shear in the horizontal velocity
field thereby ruling out the deployment of shallow-water theory with its depth-
independent velocity field as a viable description of such flows. Calculations are
presented to demonstrate that a purely hydraulic description will miss important
dynamical features of the flows.
Keywords: surface gravity currents, thermal enhancement, nonhydraulic effects.

1 Introduction

A gravity current consists of the flow of one fluid within another when this flow
is driven by the density difference between these fluids [1]. These currents are pri-
marily horizontal, occurring as either top or bottom boundary currents or as intru-
sions at some buoyantly stable intermediate level. The density differences driving
such flows may be due to salinity contrasts, as in oceanic settings [1], the presence
of suspended material, as in the case of turbidity currents [2, 3], or temperature
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contrasts [4–6], as in the case to be treated here, or combinations of these mecha-
nisms.

In the gravity current literature researchers have employed, in general, two dif-
ferent approaches. One direction of research has used hydraulic theory to study
the time evolution of these currents from a state of rest while the other investigates
the steady-state characteristics of a gravity current that has already been estab-
lished without any concern for initial conditions [7]. It is, we believe, fair to say
that this latter approach, which treats the current as steady, requires pressure bal-
ances that essentially rule out the inclusion of most of those physical processes
that make these investigations important from the point of view of applications.
Such processes would include the entrainment and sedimentation of particles that
drive turbidity currents [8], the spatial and temporal influences of heating that mod-
ify the dynamics through density changes [5, 6] as well as the various flow modi-
fications that arise from topographic forcing [9]. Adopting the former approach is
not without difficulties when it comes to including these processes in the model
formulation but it does offer an avenue of approach that the latter does not afford.

Our previous studies [3, 10, 11] have indicated that in the modelling of turbidity
currents with sedimenting particles, horizontal gradients in particle concentrations
result in a depth-dependent horizontal velocity field.

This depth dependence signifies that the deployment of shallow-water theory for
these low aspect ratio flows must be brought into question. In the present analysis
of thermally-enhanced surface gravity flows we will show that there is an anal-
ogous mechanism at work leading to ‘hot spots’ in the flow field that ultimately
rules out the use of the standard shallow-water model for such flows.

In this article we develop and analyze a two layer fluid model governing the sud-
den release and subsequent motion of a fixed volume of light fluid whose initial
density and temperature are ρ∗ and T∗, respectively.These fixed volume releases
have served as a paradigm for many atmospheric [12] and oceanic [1] gravity cur-
rents although it is the case that many of these flows being modelled arise not from
a fixed volume release but rather from variable inflow through an opening in some
barrier[13, 14]. We will provide some suggestions as to how such variable inflow
problems might be approached but for now we consider our fixed volume as being
released suddenly into a heavier ambient fluid of constant density ρ0 > ρ∗ over-
lying a gently sloping bottom. The upper layer is subjected to incoming radiation
and its density is assumed to decrease in time according to a general equation of
state. The surface heat flux is assumed to be distributed uniformly over the local
thickness of the upper layer [15]. This upper layer thickness being a function of
both space and time will lead to a temperature field which is also a function of
space and time with an increased heating rate for patches where upper layer thick-
ness is diminished due to the unsteady nature of the flow. These radiation induced
horizontal temperature gradients introduce distinctive O(1) nonhydraulic effects
into the flow field. This dependence of heating rate on the local depth of the heated
fluid layer is consistent with observations in lakes and reservoir sidearms subjected
to diurnal heating and cooling [15–17]. A similar mechanism is seen in bottom-
hugging turbidity currents when sedimentation rate depends on the thickness of
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the current [10]. In that instance sedimentation rates are greater for regions where
the current is thinner leading to local decreases in the bulk density and hence the
generation of horizontal gradients in the density field. It is these horizontal density
gradients for both turbidity and thermally enhanced gravity currents that lead to
the nonhydraulic nature of these flows.

2 Model formulation

We consider a gravity current produced by the release of a fixed volume of fluid
having initial density ρ1 = ρ∗ into an ambient fluid having a higher density
ρ2 = ρ0(constant) overlying a mildly sloping bottom. The physical configuration
is depicted in Figure 1, where η(x, t) represents the displacement of the free sur-
face from its undisturbed configuration, u = (u, w) is the fluid velocity in Carte-
sian coordinates with position vector x = (x, z), H is the mean depth of the two
layer system measured from z = 0, h(x, t) is the variable thickness of the lighter
upper fluid layer and the bottom is located at z = −sf(x), where s(0 < s � 1)
is a nondimensional slope parameter. In this study we will only consider a lin-
early varying bottom and thus set f(x) = x. The flow is driven by the buoyancy
force arising because of the difference between the temperature dependent density
ρ1(T ) of the upper layer and the fixed density ρ2 = ρ0 of the ambient fluid. The
relation between temperature and density for the upper layer is given in terms of
an equation of state which will be assumed to have the general form

ρ1(T ) = ρ0 [1 − α(T − T0)n] , n = 1, 2, (1)

wherein T0 is the fixed temperature of the lower layer whose density is assumed
fixed at ρ0, α is the thermal expansion coefficient, and n > 0 is a power law index.
Since the temperature of the lower layer is assumed to remain fixed we have chosen
to measure the temperature T1 ≡ T of the upper layer relative to this fixed value.
We shall take T = T∗ > T0 as the initial temperature of the release volume so that

ρ1(T∗) = ρ∗ = ρ0 [1 − α(T∗ − T0)n] < ρ0. (2)

We have chosen to take n = 1, 2 in our study since these are natural choices.
The case n = 1 corresponds to the usual description whereby the density decreases
linearly with an increase in temperature. The case n = 2 can be used to approx-
imate the density of fresh water near the temperature of maximum density [17],
that is, T0 ≈ 4 ◦C. Here with n = 2 we would have α = 1.65 × 10−5◦C−2.

Shown in Figure 1 is the released fixed volume of fluid which initially occupied
the region 0 < z ≤ H . Assuming small temperature differences the Boussinesq
approximation for the density is appropriate and will be invoked throughout our
model development. We shall assume a surface heat flux I which is distributed
uniformly over the local depth of the upper layer with no heating of the denser
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Figure 1: The flow configuration of the two layer fluid model.

ambient fluid. This leads to a heat source term in the temperature equation of the
form

Q =
I

ρ0Cph0

◦C s−1. (3)

In the above h0 denotes a representative depth over which the heat flux I has
been distributed, ρ0 is the reference density and Cp is the specific heat at constant
pressure. The magnitude of Q increases as h0 decreases and this will give rise to
horizontal gradients in temperature and hence also in the temperature dependent
density which will augment the driving buoyancy forces in the flow as well as
induce O(1) nonhydraulic effects into the upper layer flow field. These horizontal
gradients arising because of the x-dependence in the heat source term were noted
by Farrow [4] in his study of the hydrodynamics of the thermal bar. Our inclusion
of the variable thickness of the upper layer in the heat source term for a fully
transient two layer model has, to the best of our knowledge, not been attempted in
the literature to date.

In all of our development we will assume that the Reynolds numbers, Re, of
the flow are sufficiently large that viscous forces are negligible and that the flow
dynamics are dominated by a balance between buoyancy and inertial forces. As
for the viscous effects resulting from the boundary layer formed adjacent to the
bottom solid boundary, we deem these to be insignificant because the thickness
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of this layer, which is O(L/
√

Re) with L denoting the horizontal length scale
associated with the motion, remains well away from the interface of our two layer
model. Hence viscous effects from the bottom are not communicated to the top
layer. Further, the approximation made in ignoring the bottom boundary layer is
consistent with the small aspect ratio assumption made in this work. We have taken
the sole conservative body force to be that of gravity and neglected the effects
of surface tension at the interface. This latter assumption requires that the Bond
number B = ρg′L2/σ � 1, where g′ is the reduced gravity and σ the surface
tension [18]. We have further assumed that the flows are sufficiently rapid and
small scale that the effect of the earth’s rotation can be neglected. This requires
that the Rossby number R0 = U/fL � 1, where f is the Coriolis parameter and
U and L are characteristic velocity and length scales of the flow [18]. The non-
rotating case considered here is relevant to laboratory scale flows and has been
employed in studies of the thermal bar [4, 15].

We now adapt the equations of mass and momentum balance to study low aspect
ratio flows involving two active coupled layers consisting of an absorbing upper
layer having a temperature dependent density overlying a homogeneous fluid of
fixed density that is in contact with a gently sloping impermeable bottom. Our
choice of non-dimensional and scaled variables are given according to the follow-
ing scheme:

x = Lx̃, z = h0z̃, t =
L

U
t̃, h = h0h̃, H = h0H̃, (u1, u2) = U(ũ1, ũ2),

(w1, w2) =
h0U

L
(w̃1, w̃2), (p1, p2) = U2ρ0(p̃1, p̃2), η =

U2

g
η̃, (4)

s = δs̃, θ = T − T0 = θ0θ̃, U2 = g′h0, δ =
h0

L
,

where we have chosen the temperature scale θ0 = T∗−T0 to be the initial temper-
ature difference between the two layers and the reduced gravity g′ to be defined in
terms of the initial density contrast, that is

g′ =
ρ0 − ρ∗

ρ0
g = αθn

0 g. (5)

The aspect ratio δ = h0/L is assumed small, that is, 0 < δ � 1.We have chosen
the advective time scaling L/U for our model in order to be consistent with our
assumption that there is no heat transfer between the fluid layers. This assumption
requires that the diffusive or convective time scale given by td ∼ h2

0/κ, where κ is
the thermal diffusivity, be much larger than the advective time scale.

In the nondimensional equations to follow, (6)–(9) provide for horizontal and
vertical momentum balances in the two layers whereas (10)–(14) give the dynamic
and kinematic boundary conditions at the free surface, interface and bottom bound-
ary with tildes dropped from nondimensional quantities:

∂u1

∂t
+ u1

∂u1

∂x
+ w1

∂u1

∂z
= −∂p∗1

∂x
, (6)
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δ2

(
∂w1

∂t
+ u1

∂w1

∂x
+ w1

∂w1

∂z

)
= −∂p∗1

∂z
+ θn, (7)

∂u2

∂t
+ u2

∂u2

∂x
+ w2

∂u2

∂z
= −∂p∗2

∂x
, (8)

δ2

(
∂w2

∂t
+ u2

∂w2

∂x
+ w2

∂w2

∂z

)
= −∂p∗2

∂z
, (9)

αθn
0 p∗1 (x, H + αθn

0 η, t) = H + αθn
0 η (10)

w1 (x, H + αθn
0 η, t) = αθn

0

(
∂η

∂t
+ u1 (x, H + αθn

0 η, t)
∂η

∂x

)
, (11)

p∗1 (x, H + αθn
0 η − h, t) = p∗2 (x, H + αθn

0 η − h, t) , (12)

wi (x, H + αθn
0 η − h, t) = αθn

0

(
∂η

∂t
+ ui (x, H + αθn

0 η − h, t)
∂η

∂x

)
−
(

∂h

∂t
+ ui (x, H + αθn

0 η − h, t)
∂h

∂x

)
, i = 1, 2, (13)

w2 (x,−sx, t) = −su2 (x,−sx, t) . (14)

In the above p∗i refers to the dynamic pressure fields in the two fluids.
Under the assumption 0 < δ2 � 1 we see that the horizontal velocity field

in the lower layer is independent of z whereas that in the upper layer retains its
z-dependence. Integrating the mass balance equation for the lower layer over the
depth and applying the kinematic boundary conditions gives the mass balance to
be

∂

∂t
(h − αθn

0 η) +
∂

∂x
[(h − αθn

0 η − H − sx) u2] = 0. (15)

Pressure continuity at the interface provides p∗2 = η − θnh + H(αθn
0 )−1 leading

directly to the horizontal momentum equation for the lower layer as

∂u2

∂t
+

∂

∂x

(
1
2
u2

2 + η − θnh

)
= 0. (16)

Since it is straightforward to show that ∂p∗1/∂x is a function of z it follows that
u1 = u1 (x, z, t) . Integrating the mass balance equation for the upper layer and
applying the kinematic boundary conditions gives for continuity in that layer

∂h

∂t
+

∂

∂x

(∫ H+αθn
0 η

H+αθn
0 η−h

u1(x, z, t)dz

)
= 0. (17)

It now remains for us to specify the heat equation to complete the model. With
the surface heat flux I assumed to be distributed uniformly over the local thickness
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h(x, t) of the upper layer and applying conservation principles we have that

∂

∂t
(hθ) +

∂

∂x

(
θ

∫ H+αθn
0 η

H+αθn
0 η−h

u1 (x, z, t) dz

)
= Q, (18)

where

Q =
I

ρ0Cph0

◦Cs−1, Q =
Uθ0

L
Q̃. (19)

Employing (17) in (18) we can then express the heat equation as

∂θ

∂t
+

1
h(x, t)

(∫ H+αθn
0 η

H+αθn
0 η−h

u1(x, z, t)dz

)
∂θ

∂x
− Q

h(x, t)
= 0. (20)

Our model equations now consist of the lower layer mass balance and momen-
tum equations (15) and (16), upper layer momentum and mass balance equations
(6) and (17), respectively and the heat equation (20).

3 Some numerical results

All of our numerical results obtained for fixed volume releases involved first
expanding u1(x, z, t) in the form of a power series about the variable position
of the upper layer’s lower boundary z0 = H + αθn

0 η − h. Substituting into the
model equations and truncating the series leads to a system of eight equations in
eight unknowns which can be written in vector form as

∂U
∂t

+
∂F
∂x

= B, (21)

where U is a vector consisting of the flow variables, F is the corresponding flux
vector and B refers to any source terms present in our system. We applied Mac-
Cormack’s method [19] together with a strategy proposed by Lapidus [20] for
damping spurious oscillations. Some results are displayed in Figures 2 and 3.

In Figure 2 we have plotted the evolution of the thickness of the gravity cur-
rent for the hydraulic and nonhydraulic cases. The hydraulic model corresponds to
the case wherein the temperature field is independent of the horizontal coordinate.
This is in contrast to the model developed here wherein heating rates depend on
the local thickness h(x, t) of the heated layer resulting in a spatially dependent
temperature field. It is clear that the gravity current speed is greater for the nonhy-
draulic case which will, in turn, lead to an increased rate of thinning of the current
and a higher heating rate with increased buoyancy forces arising as a result of the
increased density contrast between the two layers.

In Figure 3 we have plotted the total pressure field along the interface given
by z = H + αθ0η − h for the hydraulic and nonhydraulic cases. We see that
the total pressure field for the nonhydraulic case falls off more rapidly than does
that associated with the hydraulic model. This is a result of the increased rate of
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Figure 2: The evolution of the thickness of the gravity current with n = 1, Q =
0.5, g′/g = 0.05, h∗ = 0.9.

thinning of the current in the nonhydraulic case coupled with increased heating
rates. The relatively level profile for the pressure that is achieved around elapsed
times t ≈ 6 in the nonhydraulic case corresponds to the similarly level profile for
the thickness of the current that is displayed in Figure 2 for the same parameter
values. It is clear that there are substantial differences between the pressures for
these two cases.

4 Some closing remarks

In contrast to the large amount of published theoretical and experimental mate-
rial on gravity currents arising from fixed volume releases, that for variable inflow
gravity currents is relatively small. This is in spite of the fact that when many
gravity currents are initiated by, say, an accidental release of a fluid into an ambi-
ent environment, there is a variable discharge of fluid through an opening in a
barrier. This would be the case in the situation when the rupture of a storage tank
or pipeline gives rise to the release of a fluid at a variable rate over a period of time.
Variable inflow gravity currents are also of great interest to those involved in the
study of fluid motions in the natural environment that are not the result of contam-
inant releases. For example, flows of fresh water from spring run-off into lakes and
fjords rarely take place with a constant flow rate, and the consequent evolution of
the intrusions thus formed may be incorrectly estimated by using a constant flow
model. A number of similar scenarios with flash floods, flows from volcanoes,
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Figure 3: The evolution of the pressure at the interface between the two fluids with
n = 1, Q = 0.5, g′/g = 0.05, h∗ = 0.9.

discharges from locks in canals connecting lakes etc., all involve variable inflow
buoyancy driven flows.

To develop a model for several of the above scenarios relating to variable inflow
gravity currents one could consider a large volume of inviscid and incompress-
ible fluid having a fixed temperature T∗ and density ρ∗ initially at rest behind a
lock gate in which a small opening of height h0 � H is suddenly formed while
a variable pressure is applied to the surface of this fluid. This mimics the condi-
tions pertaining to the sudden rupture of an onshore storage container that then
debouches its contents into a large body of water at a variable rate to create a
variable inflow surface gravity current. Using energy principles and continuity it
is possible to show that the average velocity through the narrow opening, u1, is
governed by the forced Riccati equation

du1

dt
+

L2

sh0

u2
1

2
=

L2

sh0
p(t) +

L2

2sh0
, u1(0) = 0,

where L is the horizontal dimension of the container and s the average length of a
streamline extending from a point on the surface of the fluid in the lock to a point
in the narrow orifice. Solving this initial value problem then gives a reasonable
value for the variable inflow velocity.
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