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Abstract

A modified Volume-of-Fluid numerical method is developed to predict the tran-
sient deformation of a viscoelastic drop surrounded by a more viscous Newto-
nian liquid passing through an axisymmetric microfluidic contraction. Viscoelastic
effects are represented using an Oldroyd-B rheological model and can be generated
in practice by the addition of small amounts of polymer. The numerical method is
tested against experimental observations of viscoelastic drops forming at nozzles.
We show that these simulations reliably reproduce flow and drop deformation. Pre-
dictions of drop shape and elastic extension are then presented and discussed for
drop motion through a microfluidic contraction, and these results are compared
against results for an equivalent Newtonian only system.
Keywords: viscoelastic, fluid dynamics, Oldroyd-B, Boger fluid, Volume of Fluid,

1 Introduction

Microfluidic technology promises to revolutionise chemical and biological pro-
cessing in the same way that the integrated circuit revolutionised data processing
three decades ago [1]. Key to the operation of microfluidic devices will be the
manipulation of droplets of viscoelastic fluids, as many biological and biomedi-
cal liquids to be processed contain long chain molecules that stretch and rotate in
response to local strain fields. As a contraction can induce mixing in droplets, as
well as significantly alter their shape, an understanding of how droplets behave
when passing through such a geometry will be essential to the operation of future
microfluidic devices.
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Previously published studies concerned with viscoelastic fluids passing through
contractions deal with single phase systems. As discussed in Boger [2], elastic
contraction flows display fluid behaviour that is markedly different to that of their
Newtonian counterparts. The non-linearity of elastic fluids, in particular, makes
their use in microfluidic scale devices attractive [1]. While numerical studies of
single phase viscoelastic fluids are reaching maturity ([3] for example), numerical
studies of viscoelastic systems which contain immiscible fluids are few.

The purpose of this study is threefold. Firstly, we describe how a Volume of
Fluid computational algorithm has been modified to simulate viscoelastic immis-
cible fluid systems, with the elastic stresses simulated using an Oldroyd-B rheo-
logical model. We then demonstrate the validity of the algorithm by simulating a
multiphase problem for which experimental results are available. After establish-
ing confidence in the technique, we present results for a viscoelastic droplet pass-
ing through an axisymmetric contraction, and discuss how the behaviour of this
droplet differs from an equivalent Newtonian droplet passing through the same
geometry.

2 Mathematical model

The system we model consists of two immiscible fluids, one termed the continu-
ous phase and the other the disperse phase. Both phases are viscous and incom-
pressible. Interfacial tension acts at the boundary between the two phases, and the
presence of polymers in one or both phases exerts additional elastic stresses on the
fluid. We employ the following non-dimensional equations to model the dynamics
of this system;

∇ · u = 0 (1)

∂φ

∂t
+ ∇ · φu = 0 (2)

∂ρu

∂t
+ ∇ · ρuu = −∇p +

1
Fr

ρĝ +
1

We
κn̂δ(x − xs) +

1
Re

∇ · τ (3)

τ = µ[∇u + (∇u)T] +
µp

De
(A − I) (4)

∂A

∂t
+ ∇ · Au = A · ∇u + (∇u)T · A − 1

De
(A − I) (5)

Equations (1)–(3) are the continuity, disperse phase transport and momentum equa-
tions, respectively. These equations are fairly conventional, with the exception of
the third term on the right of eqn. (3) which represents the interfacial tension
induced stress jump which occurs across the disperse-continuous phase interface.
Equation (4) describes the stress within the fluid resulting from both viscous and
elastic contributions, while eqn. (5) describes the evolution of the elastic configu-
ration tensor, A.

The above equations are applied in a volume averaged sense when modelling
the system. Thus, u represents the fluid velocity, locally volume averaged over
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both phases. Other volume averaged variables include φ, the disperse phase vol-
ume fraction, ρ, the density, µ, the (solvent only) shear viscosity, and µp, the con-
centration of polymers present, expressed as the increase in shear viscosity of the
solution caused by the addition of polymers. The density is calculated from the
disperse phase fraction using ρ = (1− φ) + φρd where ρd is the non-dimensional
disperse phase density. Analogous expressions exist for µ and µp. Note that ρ, µ
and µp are all uniform away from any interface regions. Other variables in the
above equations include ĝ , a unit vector directed in the direction of gravity, κ, the
local curvature of the disperse-continuous phase interface, n̂, a unit vector defined
along the disperse-continuous phase interface and directed normal to this interface,
and xs, the location of the disperse-continuous phase interface.

In non-dimensionalising the equations, velocity has been scaled by u∗, length
by x∗, density by the continuous phase density ρ∗c and viscosities (including the
polymer concentration µp) by the continuous phase (solvent only) viscosity, µ∗

c .
These scalings result in three non-dimensional groups describing the ratio between
inertial, viscous, gravitational and interfacial forces acting in the system;

Re =
ρ∗cu

∗x∗

µ∗
c

, We =
ρ∗cu

∗2x∗

σ∗ and Fr =
u∗2

g∗x∗ .

Note that in our notation an asterisk implies a dimensional quantity, a ‘c’ subscript
a continuous phase property, and a ‘d’ subscript a disperse phase property.

The Oldroyd-B rheological model has been chosen to represent viscoelastic
effects [4]. Oldroyd-B fluids have constant shear viscosities, so are appropriate
for modelling Boger fluids such as dilute polymer solutions [2]. In the Oldroyd-B
model, polymers are represented as infinitely extensible ‘dumbbells’, the configu-
ration of which is described by an ensemble averaged tensor A =< RR >, where
R represents the orientation and length of individual dumbbells. The length of R
is normalised so that in the relaxed state, |R| = 1 and A = I (the identity matrix).
Equation (5) describes the evolution of A. The Deborah number which appears in
this equation is the ratio of the relaxation time of the polymer to the timescale of
the underlying flow, i.e., De = tp

∗u∗/x∗ where tp
∗ is the polymer relaxation time.

Highly elastic fluids have high Deborah numbers, whereas near Newtonian fluids
have Deborah numbers close to zero.

3 Numerical solution technique

The simulations were performed using a finite volume code originally due to Rud-
man [5], but modified to account for elastic effects. The finite volume code, minus
elastic effects, has been previously used to model the formation and subsequent
‘pinch-off’ of both Newtonian and generalized Newtonian pendant drops [6], the
deformation of Newtonian and shear thinning drops that pass through microflu-
idic sized axisymmetric contractions [7, 8, 9], and the deformation and breakup of
a continuous stream of liquid in a microfluidic ‘flow focusing’ device [10]. The
Volume of Fluid (VOF) technique is used to track the disperse-continuous phase
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interface with the disperse phase volume fraction (the VOF function) advected
using a variation of the Youngs scheme [11]. Surface tension forces are applied
using a variation of the Continuum Surface Force (CSF) model [12]. The domain
is discretised using a uniform, staggered mesh with pressure and volume fractions
stored at cell centres, and velocities stored at cell boundaries.

To include elastic effects, we require a solution for the dumbbell configura-
tion tensor A throughout the flow domain. Rather than solve eqn. (5) directly, we
have found that for multiphase problems better accuracy is obtained by solving for
µpA = B instead. In effect, this is solving for the elastic stress field directly rather
than the dumbbell configuration field.

To express eqn. (5) in terms of B, we first note that as

µp = (1 − φ)µp,c + φµp,d (6)

(µp,c and µp,d are the polymer concentrations in the continuous and disperse
phases, respectively), eqn. (2) implies that

∂µp

∂t
+ ∇ · µpu = 0. (7)

Combining this with eqn. (5) gives the transport equation

∂B

∂t
+ ∇ · Bu = B · ∇u + (∇u)T · B − 1

De
(B − µpI) (8)

which is the equation solved for the evolution of B. Elastic stresses are included
in the calculation via eqn. (4) once the components of B are known. As the B
components are stored at mass cell centres, linear interpolation is used to evaluate
any components required at cell vertices.

The main details of the numerical technique used to solve eqn. (8) have been
previously described by Davidson and Harrie [13]. For each timestep that the solu-
tion is advanced, the technique uses three sequential steps; advection, correction,
and the addition of source terms. The correction step ensures that the diagonal
components of B in each computational cell are positive, as is required physically.
This technique was originally developed by Singh and Leal [3], however here we
perform this correction on the components of B rather than on A. The addition
of source terms to the evolution of B, that is, the addition of all of the terms on
the right hand side of eqn. (8) during each timestep, is accomplished using a first
order explicit technique that ensures that the determinant of B is positive to first
order (in timestep) given that it was positive at the previous timestep [13]. That the
determinant of B remains positive is also required physically [3].

The method used to advect the components of B used in this study is new, and
differs from that used in [13]. It is motivated by the need to minimise diffusion
of B across fluid phase interfaces, while still providing the high order accuracy
necessary to reproduce experimentally observed elastic behaviour.
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The advection component of eqn. (8), performed during the advection step, can
be represented by

∂B

∂t
+ ∇ · µpuA = 0. (9)

The temporal derivative of this equation is discretised using an explicit first order
Euler method. In evaluating the spatial derivatives, a value for the flux of B, that is
µpuA, must be calculated for each computational cell boundary. As the concentra-
tion of polymer contained within a computational cell is just a linear combination
of the disperse phase volume fraction contained within that cell (see eqn. (6)), the
flux of polymer concentration over each boundary (µpu) can be calculated from
the disperse phase volume fraction fluxes (φu) that are already known from the
‘VOF’ differencing of the disperse phase transport eqn. (2). The flux of B is cal-
culated by multiplying these polymer concentration fluxes (µpu) by values of A
approximated at each computational cell boundary and averaged over the timestep
duration.

The advantage of using the disperse phase volume fluxes in advecting the B
components is that the concentration of polymer within a cell and the elastic stress
within that cell are always ‘synchronised’. This ensures that in regions where there
is no polymer, there will be no advection of elastic stress. It also ensures that no
diffusion of elastic stress can occur across an interface between a fluid phase that
contains polymer and one that does not, as no flux of polymer occurs across such
an interface.

Cell boundary values for the components of A are evaluated using a third order
spatially accurate method. This method is based on the QUICK scheme [14], how-
ever, the upwind gradients used to evaluate each boundary value are limited to
ensure that the diagonal components of the A tensor are positive on each boundary,
and that the determinant of A calculated from these boundary values is positive, as
required physically. Application of these ideas leads to a temporally first order and
spatially second order bounded scheme for the advection of B.

4 Validation: viscoelastic pendant drop

To demonstrate the validity of the method, we compared published experimental
data [15] against simulation results for the formation of a viscoelastic pendant
drop in air. Simulation results for this problem were previously presented in [13].
Although the figures shown here were produced using the present version of the
code, the results are almost identical to those in [13].

Figure 1 shows selected experimental and simulation images of the pendant drop
evolving. The liquid used in the experiments was a water and glycerol mixture
containing 0.1 wt% of 1 × 106 g/mol Polyethylene Oxide (PEO) polymers. The
droplet formed on a nozzle of outer radius 2 mm. Using fluid and polymer prop-
erties measured by [15], non-dimensional numbers used in the simulations were
calculated as Re = 2.1, We = 7.5 × 10−4, Fr = 4.36 × 10−3, De = 3.1 × 10−2

and µp,d = 7.06 × 10−1, where droplet phase properties were used in the non-
dimensionalisation. The simulations were performed in axisymmetric coordinates,
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Figure 1: A comparison of experimental and simulation images for the pendant
drop experiment. Relative times between the images are indicated.

using a mesh of 64 × 288 cells. Comparing the images of figure 1 shows that the
algorithm captures both qualitative and quantitative features of the experiments
well. In particular, the necking of the droplet at two positions, which causes the
polymers to locally extend, thus preventing breakage and producing the ‘bead-
on-a-string’ structure, is captured accurately. Experiments conducted using PEO
solutions having different molecular weights and concentrations have also been
accurately reproduced [13].

5 Results: axisymmetric contraction

The contraction problem consists of a droplet of viscoelastic fluid, entrained in a
more viscous continuous phase, and passing through a 4 : 1 axisymmetric contrac-
tion. All lengths are non-dimensionalised by the radius of the inlet x∗ so that the
contraction radius is 1/4, the contraction length is 5 and the initial droplet diame-
ter is 1. Further details of the geometry can be found in the related Newtonian and
shear thinning drop deformation studies [7, 8, 9]. The scaling velocity u∗ is taken
to be the average inlet velocity, and gravitational effects are ignored. It is assumed
that initially the polymers within the droplet are in a relaxed state so that A = I. A
computational mesh of 64 × 768 cells is used.

Figure 2(a) shows the form of the viscoelastic droplet as it passes through the
contraction, as well as the magnitude of the

√
trA that develops within the droplet:√

tr(A) is a measure of the average length of the polymers. The parameters chosen
for the simulation could represent a droplet of water and glycerol based dilute PEO
solution, similar to that used in the pendant drop experiments of figure 1, entrained
in a low viscosity Silicon oil, and passing through a x∗ = 100 µm contraction with
an average continuous phase inlet velocity of u∗ = 3 cm/s. This experimental
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Figure 2: Images showing how viscoelastic and Newtonian droplets deform as they
pass through the 4 : 1 axisymmetric contraction. For both cases Re =
0.1, We = 9.09 × 10−3, µd = 0.1 and ρd = 1. Each frame is annotated
with its non-dimensional time, and the shading in the viscoelastic case
represents

√
tr(A), a measure of the average polymer extension.

setup is feasible with current microfluidic technology. Figure 2(b) shows how an
identical droplet to that of figure 2(a) would behave in the same system if the
droplet contained no polymers.

The first five frames of figures 2(a) and 2(b) show the droplets entering and
moving through the contraction. In the Newtonian case, the axial acceleration of
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the continuous phase near the entrance to the contraction deforms the drop into
an inverted ‘tear’ shape, with a narrow point at its leading tip. By t = 0.012, this
tip has rounded, as both interfacial tension and drag from the surrounding contin-
uous phase pull the tip back towards the main body of the droplet. By t = 0.18,
this tip has become quite bulbous, with secondary interfacial waves propagating
back along the extended filament towards the contraction entrance. This process
of ‘tip bulbing’ has been observed in low viscosity Newtonian droplet contraction
simulations [9].

The viscoelastic droplet behaves very similarly as it enters the contraction, but
the further it progresses into the contraction, the more the polymers extend and
alter its behaviour. At the entrance to the contraction, the extensional strain that
the polymers experience as the fluid accelerates extends the polymers in the axial
direction. This extension causes a small axial stress on the droplet, which ‘blunts’
the sharpness of the droplet tip at t = 0.06. As the droplet continues into the
contraction, shear stresses, exerted by the more viscous continuous phase, extend
the polymers more significantly, and transport them around the droplet. Polymer
extension occurs mainly in two areas; at the leading tip, where the droplet expe-
riences considerable extensional strain rates, and along the sides of the filament,
where the droplet experiences large shear strains.

Noticeable effects of polymer extension on droplet deformation do not appear
until around t = 0.18. At this time, the distribution of

√
tr(A) within the leading

bulb of the droplet has becomes quite significant and complex, with maximum
values of

√
tr(A) in this region of 40 and greater. The resulting elastic stresses

cause the leading tip bulb to be more ‘arrow’ shaped than the Newtonian bulb, and
also dampen the interfacial waves that were observed on the Newtonian droplet at
this time. By t = 0.24, maximum

√
tr(A) values within the droplet have grown to

50. These extensions are located just behind the leading bulb of the droplet, along
its interface.

At times between t = 0.32 and t = 0.6, the behaviour of the droplets differs
mainly in the way in which rear of the each deforms. In the Newtonian case, the
rear tip of the droplet forms a fine point, from which a small amount of fluid
is shed. Fluid is shed from this tip as drag from the continuous phase, which is
directed towards the contraction entrance, has a greater magnitude than interfacial
tension, which pulls the tip towards the contraction exit. This behaviour has been
observed in previous low viscosity Newtonian droplet deformation simulations [9].

The rear tip of the viscoelastic droplet behaves quite differently, instead forming
a distinctive forked tail which leaves the contraction earlier than that of the New-
tonian droplet. To understand why, we note that during these later times, the shear
stresses that act on the droplet interface affect the polymers in two ways: Firstly,
large shear rates caused by the interfacial shear stress extend any polymers that
lie close to the interface but within the droplet fluid. These polymers are orien-
tated in a direction that is almost tangential to the interface. A close examination
of figure 2(a) at t = 0.32 for example shows that near the interface of the droplet,√

tr(A) is higher than in the body of the droplet, and can reach values as large
as 70 near the exit to the contraction. Secondly, the interfacial shear stress moves
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droplet fluid that is adjacent to the interface backwards relative to the leading tip of
the droplet, that is, towards the rear of the droplet. Thus, polymers that are within
the droplet and adjacent to the interface are extended and moved towards the rear
of the droplet as it progresses through the contraction.

At the rear tip, these extended polymers exert stresses on the fluid, changing the
shape of the rear interface. When the rear of the droplet first enters the contraction,
its shape is almost pointed. As the tip moves into the contraction however, poly-
mers at the tip become extended and orientated parallel to the droplet interface.
At the very end of the droplet, these polymers are directed slightly inwards, as the
interface shape here is directed towards a single point. As these polymers are in
tension, they exert an elastic stress on the fluid, which pulls the centre of the rear
tip forwards, creating the inverted ‘dimple’ at the rear of the droplet observed at
t = 0.32. As the flow of polymers along the droplet interface and towards the rear
of the droplet continues, the dimple grows, and the forked tail that is shown at
t = 0.48 in figure 2(a) develops. The growth of this tail is reinforced by the high
centreline velocity of the continuous phase that follows the droplet through the
contraction. The viscoelastic droplet exits the contraction sooner than the Newto-
nian droplet simply because its tail is blunt, so is shorter than the narrower New-
tonian one.

Beyond the contractions, both droplets shorten and expand radially as the sur-
rounding continuous phase fluid decelerates. The simulations predict that the fluid
shed from the rear of the Newtonian droplet coalesces with the rest of the droplet
at t ≈ 0.72. As discussed in Harvie et al. [9] however, the timing of this behaviour
may or may not be physically realistic as the film drainage that occurs between
these two droplets as they coalesce is not captured by the resolution of the com-
putational mesh. At times beyond t = 0.7, interfacial tension quickly reforms the
Newtonian droplet into an approximately spherical steady state form.

In the viscoelastic case, the forked tail that was present on the droplet while it
was within the contraction shortens and expands radially, forming the bulbous ‘U’
shape observed at t = 0.54 in figure 2(a). The droplet then moves towards a more
spherical shape under the action of interfacial tension, however, as the polymers
take some time to relax, the viscoelastic droplet takes longer to reach a steady
state form than the Newtonian droplet does. Even at t = 0.9, a time at which the
Newtonian droplet is almost spherical, the viscoelastic droplet still has a ‘flattened’
top, with polymers within it having lengths of up to 9. Simulations show that the
viscoelastic droplet does not reach its steady and effectively relaxed elastic state
until about t = 1.6.
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