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Abstract 

Some analytical solutions of the 1D Navier Stokes equation are introduced in the 
literature. For 2D flow, the analytical attempts that can solve some of the flow 
problems sometimes fail to solve more difficult problems or problems of 
irregular shapes. Many attempts try to simplify the 2D NS equations to ordinary 
differential equations that are usually solved numerically. The difficulties that 
are associated with the numerical solution of the Navier Stokes equations are 
known to the specialists in this field. Some of the problems associated with the 
numerical solution are; the continuity constraint, pressure–velocity coupling and 
other problems associated with the mesh generation. This drives the generation 
of many schemes to simplify and stabilize the 2D Navier Stokes equations. The 
exact solution of the Navier Stokes equations is difficult and possible only for 
some cases, mostly when the convective terms vanish in a natural way. This 
paper is devoted to studying the possibility of finding a mathematical solution of 
the 2D Navier Stokes equations for both potential and laminar flows. The 
solutions are a series of functions that satisfy the Navier Stokes equations. The 
idea behind the solutions is that the complete solution of the 2D equations is a 
combination of the solutions of any two terms in the equations; diffusion and 
advection terms. The solution coefficients should be determined through the 
boundary conditions. 
Keywords:  Navier Stokes equations, incompressible flow, fluid flow, Newtonian 
fluids, potential flow, laminar flow, mathematical solution, steady state. 

1 Introduction 

Since the Navier and Stokes derived the mathematical modeling of the fluid in 
motion; Navier Stokes equations, the mathematical solution have been 
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impossible. The difficult in solving these equations prohibited a theoretical 
treatment of viscous flows. The boundary layer concept, which breakthrough by 
Prandtl, linked the theory with practice. Prantl showed that the viscous effect is 
important in a thin region adjacent to a solid.  
     The governing equations for steady state incompressible flow are the 
continuity and momentum equations  
     
Continuity equation 
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Momentum equations  
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Analytical solution can be obtained for some simple cases and under some 
assumptions, these equations simplified to get mathematical solution for the 
boundary layer thickness, shear stress and some basic definitions. To solve the 
flow over a flat plate, Blasius defined a dimensionless stream function for a 
laminar flow over flat plate as; [2] 
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And by applying the according boundary conditions, the boundary layer 
thickness is   
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And shear stress for laminar flow 
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For the turbulent flow, mathematical solution shows these functions for the 
boundary layer thickness and shear stress; [2]    
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and shear stress is 
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Some attempts try to convert these equations into ordinary differential equations. 
The ordinary differential equations usually solved numerically. Usually, the full 
solution of the NS equations obtained numerically; Finite difference, finite 
volume or finite element methods. These numerical methods find difficult in 
solving the NS equations. The difficulties are due to continuity constraint and 
strong advection term. Numerically, continuity equation usually replaced by 
pressure Poisson equation or Penalty function. Many schemes developed to 
overcome the strong advection term. Some other problems associated with the 
mesh generation such in dividing the domain into elements or cells with graduate 
size which not easy. Methods such as; Quad Tree or unstructured grid; are 
powerful but may fail to discretized domain efficiently. All above is the 
challenge of this time to find a good scheme or powerful grid generation method. 
     The present study considers mainly the mathematical solution of two- 
dimensional, steady state laminar flow of Newtonian fluids. The idea that based 
on is that the full solution of the Navier Stokes equation is a combination of the 
solution of any two parts. It is known that the solution of the diffusion term is 
sine and cosine. The advection term solution is exponential.  

2 Mathematical solution of 2D laminar flow equations 

It is possible to find exact solutions for the Navier Stokes equations in certain 
cases, mostly in which the quadratic convective terms vanishes in a natural way. 
[5]. Outside the boundary layer, we can suppose that that the viscosity effect is 
equal in both direction yx µµ =  and the diffusion terms are equal in both 
directions. However, we know the influence of the viscosity confined to the 
boundary layer.  
     We can assume a two general function in which one is a solution of the 
boundary layer and the other is a solution of the free stream potential flow.     
 
We propose that 
                                            )()( xHyFUu PO ++=                                          (9) 
 
Easily we can obtain the following differentiations  
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From the continuity constraint; 
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From the first momentum equation, we obtain that;   
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By integrate the pressure gradient from, eqn. (20), with respect to x, we obtain 
that 

42  Advances in Fluid Mechanics VI

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



  

[ ] )()(')(''

)(')(')(')()('

)(')(

)(')()(')()('

)()(

yMxHxyF

dxyFyxHdxyFxGdxyFV

dx
y

U
yxHdx

y
U

xGdx
y

U
V

dxxHxHdxxHyFdxxHU

dx
x

U
xHdx

x
U

yFdx
x

U
UxP

PO

POPOPO
PO

PO

POPOPO
PO

+++

×−−×−×−

∂
∂

×−−
∂

∂
×−

∂
∂

×−

×−×−×−
∂

∂
×−

∂
∂

×−
∂

∂
×−=

∫∫∫

∫∫∫

∫∫∫
∫∫∫

µ

ρρρ

ρρρ

ρρρ

ρρρ

    (21) 

 
Thus 
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Rearranging the equation eqn.(22) 
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By applying the expressions for the velocities and their derivatives into the 
second momentum equation eqn.(3). 
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By integrate the pressure gradient from, eqn.(25), with respect to y, we obtain 
that 
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which can be re-expressed as: 
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To make the diffusion terms equal in eqn.(23) & eqn.(27);we get; 
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Therefore, for the advection terms, we get the following conditions:  
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The solution for the irrotational laminar flow is: 
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The solution for the rotational laminar flow is: 
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The pressure distribution for both rotational and irrotational flows is: 
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The rotation function is defined by [2] 
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The shear stress;[2] 
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At the walls, the velocity components are equal to zero, so we have that   
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3 Conclusion and future work 

The mathematical background of the problem will help in the numerical study. In 
finite element, the element type should be chosen according to the physical 
problem. The mathematical solution that considered here is a continuous 
function over the domain; inside and outside the boundary layer; and satisfies 
continuity and momentum equations. The coefficients included in the solution 
should be determined through satisfying the boundary conditions for velocity 
and pressure. But the boundary condition for the pressure at the wall is satisfied 
already as the boundary condition for the velocity applied. Therefore, the 
boundary conditions for the velocity just needed to be satisfied.     
     This solution could be a general solution for potential and laminar flows. The 
shear between the fluid layers does not vanish outside the boundary layer 
because the friction between the layers cannot be eliminated. The advantage of 
the mathematical solution over the numerical solutions is so clear, but can be 
obtained for simple geometries. A future work will consider the application of 
the solution for simple cases and a solution for the thermal and turbulent flows 
will be brought. 
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