
A parallel computing framework and a
modular collaborative cfd workbench in Java

S. Sengupta & K. P. Sinhamahapatra
Department of Aerospace Engineering, IIT Kharagpur, India

Abstract

The aim of this study is to give the means for writing parallel programs and to
transform sequential/shared memory programs into distributed programs, in an
object-oriented environment and also to develop a parallel CFD workbench
utilizing the framework. In this approach, the programmer controls the
distribution of programs through control and data distribution. The authors have
defined and implemented a parallel framework, including the expression of
object distributions, and the transformations required to run a parallel program in
a distributed environment. The authors provide programmers with a unified way
to express parallelism and distribution by the use of collections storing active
and passive objects. The distribution of classes/packages leads to the distribution
of their elements and therefore to the generation of distributed programs. The
authors have developed a full prototype to write parallel programs and to
transform those programs into distributed programs with a host of about 12
functions. This prototype has been implemented with the Java language, and
does not require any language extensions or modifications to the standard Java
environment. The parallel program is utilized by developing a CFD workbench
equipped with high end FEM unstructured mesh generation and flow solving
tools with an easy-to-use GUI implemented entirely on the parallel framework.
Keywords: Java, framework, parallel programming, program transformation,
CFD, mesh.

1 Introduction

The chief aim here is to provide a few tracks in the use and development of an
environment or more specifically a programming framework for the
development of CFD engineering software with parallel approaches. Many

Advances in Fluid Mechanics VI 21

doi:10.2495/AFM06003

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line)

authors have shown the strength of the approach in different fields of mechanics,
including parallel and/or CFD computations: e.g. a study of a transient model of
fluid mechanics fully coupled to an electrochemistry model in [1], some object-
oriented techniques dedicated to CFD in [2], a finite element model for modeling
heat and mass transfer using the Diffpack library in [3], domain decomposition
techniques using pvm [4], [5]. In [6], the problem of the utilization of Java for
numerical computation in the industrial real life problems is raised up, and no
definitive response is brought probably because of lack of experiments in the
domain. One aim of the present work is to give an example of large scale coding
in java significantly more complex than sequential programming; the idea of this
work is to develop a pure JAVA framework for finite elements or finite volume
parallel computations. In this paper, the authors would like to describe some
aspects of developing an application in Java for domain decomposition in CFD
with examples and proves of data convergence and comparative speedups taking
into account another problem of some computational complexity all along using
the authors’ parallel framework .The paper, however, does not discuss the
choices of the algorithms which will be done in a future paper, but to illustrate
on complex algorithmic examples the opportunity to move to a new
programming paradigm. To begin, the authors show some pure performance
comparison tests between JAVA and C/C++ on a classical matrix/vector product
and data convergence with a program written for calculating lift and drag over a
NACA -0012 aerofoil (using Lifting-Line theory). Programming for multi-
processors computers is embedded in the JAVA environment. After a brief
description of the basic features of JAVA, the authors introduce a simple way of
writing a parallel matrix/vector product in Java implanted for SIMD/MIMD
computers for solving large linear systems by the way of an iterative method. At
last, the authors show a tentative development for a overlapping domain
decomposition method for the Navier-Stokes problem implemented entirely on
the framework to illustrate the fast development capabilities in JAVA for object-
oriented finite elements and the emerging possibilities of the development of
object-oriented distributed computing libraries for lucid programming. The
library named JPE includes an easy and intuitive programming model based on
distributed threads; object-based, message-passing APIs; and distributable data
collection. JPE takes a class library-based approach to providing a distributed
parallel programming environment. New classes and interfaces supporting
distributed threads, message passing, and distributable data collections are
included in this package.

2 Computational problems and the approach

Roughly speaking, we distinguish the Java programming language from the Java
Virtual Machine (JVM). The JVM is an interpreter that executes the program
compiled to Java byte codes. The main consequence is that a program compiled
on a system can be run on all systems. This very attractive aspect could hide a
major drawback especially in CFD computation: the efficiency. Most
computations in mechanics involve a large number of scalar products (elemental

22 Advances in Fluid Mechanics VI

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line)

contributions computation, Crout reduction in direct linear systems solvers,
matrix/vector products in iterative linear system solvers). Here, the same code
has been tested. (Java has a C++ syntax, only memory allocation) for
computation of matrix/vector products, with a direct addressing and with an
indirect addressing, i.e. code respectively corresponding to v[j] = A[i][j] * x[j]
and v[j] = A[i][j] * x[table[j]], where table[] enables us to address the elements
in the array x[]. It is worth noting that the code in C/C++ and JAVA are exactly
the same. Various number of matrix/vector products are done, for various size of
matrices. Results are shown on Figure 1. Results are similar on different
platforms (Windows XP on a Pentium 845, Linux on a single-processor Intel-
845, Tru 64 Dec-Unix on a 4 processors EV6 – Version 1.3.0 and 1.4.2 version
for JAVA virtual machine and J2SDK1.4.2) and shows roughly speaking that
Java is from 72% to 85% within the C compiled code with maximal optimization
options for direct memory access, and from 65% to 82% with indirect
addressing. It should be noted that with reference to Amdahl’s law of speedup in
parallel systems, the best results are obtained for large sized matrices. The drawn
conclusion is that good performances rate can be achieved for computational
tools in Java using threads. This efficiency is acceptable to develop tools for the
fast design of numerical algorithms for large application on single processor
systems using time-sharing.

Figure 1: Comparison between C/C++ and Java code for matrix/vector

multiplications using threads on single processor systems.

3 Parallel algorithm and approach

3.1 The parallel framework

Looking at MPI which has been accepted as the standard for parallel computing
on distributed platforms in C, the library comes with similar functions with
almost similar syntax as well as functions. The use of non-blocking
communication alleviates the need for buffering since a sending process may

Advances in Fluid Mechanics VI 23

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line)

progress after it has posted a send. Therefore the constraints of safe
programming can be relaxed. However some amount of storage is consumed by
a pending communication. At a minimum the communication subsystem needs
to copy the parameters of a posted send or receive before the call returns. If this
storage is exhausted then a call that posts a new communication will fail since
post send or post receive calls are not allowed to block. A high quality
implementation will consume only a fixed amount of storage per posted non-
blocking communication thus supporting a large number of pending
communications. The failure of a parallel program that exceeds the bounds on
the number of pending non-blocking communications like the failure of a
sequential program that exceeds the bound on stack size should be seen as a
pathological case due either to a pathological program or a pathological JPE
implementation.

Table 1:

int JPE_Init(int
num_procs,String
mother_machine)

The first and foremost
of the functions that
has to be called to
initialize the
framework. Return
value is 1 if successful
else returns error
code(0 to 7 except 1).

Is highly dependent on the
machine identifier.

int JPE_getID(void) This method returns
the local id of the
machine i.e. the
integer id of the
current processor.

Often used in identifying
processors using ids and
not machine id.

int
JPE_Send(datatype[]
data,int size,int hid)

This method can be
used to send data to
another processor with
id hid. (Overloaded)

The hid parameter must be
correct to ensure data
transfer. Available as both
blocking and non-blocking.

nt
JPE_Recv(datatype[]
data,int size,int hid)

This method can be
used to receive data
from another processor
with id hid.

The hid parameter must be
correct to ensure data
transfer. Available as both
blocking and non-blocking.

int JPE_Bcast(datatype
data,int size)

This method can be
used to send data to all
another processors in
the connection.
Returns 1 if ok else 0-
7 except 1 in case of
errors.

Comes in two formats –
blocking and non-blocking.
Available as both blocking
and non-blocking.

24 Advances in Fluid Mechanics VI

Method specifications.

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line)

int
JPE_iAllReduce(int
data,int operation

This method can be
used to accumulate the
results obtained as a
result of certain
computations in each
processor by the
operation parameter
and saved in each
processor.

Similar implementations
exist for short, unsigned
short, unsigned int, long,
unsigned long, float,
unsigned float, double,
unsigned double as well as
unsigned long double as
well as for classes with
applicable fields.

int JPE_iReduce(int
data,int operation,int
hid)

This method can be
used to accumulate the
results obtained as a
result of certain
computations in each
processor by the
operation parameter
and saved in the target
processor given by the
parameter hid-> “host
id” to receive final
value.

Similar implementations
exist for short, unsigned
short, unsigned int, long,
unsigned long, float,
unsigned float, double,
unsigned double as well as
unsigned long double as
well as for classes with
applicable fields. Available
as both blocking and non-
blocking.

int JPE_Finalise() Returns 1 if ok else
returns -1.

Mandatory method.

Figure 2: Comparison between data generated between serial and p=2,4 and

6 parallel algorithm.

Advances in Fluid Mechanics VI 25

Table 1: Continued.

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line)

4 Results

4.1 Data convergence

Here to verify the convergence of the local and global solutions and to yield a
satisfactory result that satisfies both advantages of time and space complexity,
the authors have considered the computation of drag and lift (along with
pressure) distribution on a NACA-0012 aerofoil at a given angle of attack, free-
stream conditions etc. making use of the thin aerofoil theory. Figure 2 shows the
plot of lift coefficient along a NACA-0012 aerofoil for various numbers of
processors against the serial code.

Figure 3: Comparison between speed ups of various processors along with

variation in data size.

4.2 Speed up

In Java, parallel programming is embedded into the language. The key point of
this kind of programming is the class JDC present in the package JPE. The
question is then to check the performance of this class in the context of a CFD
code. The test done here is to parallelize an unstructured mesh generation
algorithm: the code being tested on Linux systems-Intel-845. Figure 3 shows the
speedup achieved over number of processors for a mesh size of 160,000
triangular elements.

4.3 The CFD workbench

The workbench was written in Java and the GUI was implemented using the
swing utility. The look and feel is set to platform default look by the Java code
piece: ‘UIManager.SetLookandFeel(default)’. The workbench provides users

26 Advances in Fluid Mechanics VI

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line)

with a canvas to draw arbitrary geometries as well as select certain standard
features. The mesh button displays a dialog which prompts the user to select
mesh fineness. Solve button displays a dialog prompting the equation to be
solved and tolerance factors to be considers. The top-level menus include options
to display pressure plots, streamlines and as well as vibration plots along time.

Figure 4: Mesh generated around an arbitrary body. (2-D).

Figure 5: Mesh generated by domain-decomposition around an arbitrary
body. (2-D). Boundary lines indicate load-balancing across 4
processors by geometry distribution and inter-zonal boundaries.

Advances in Fluid Mechanics VI 27

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line)

Figure 6: Manager–Worker model to distribute computational load.

 The mesh generation is achieved by decomposing the entire flow domain into
sub-domains and distributing the computational load across participating
processors. The method presented in this paper is geometry-based, in that the
geometrical data of the boundary is used to create artificial inter-zonal
boundaries. Figure 5 shows the artificial inter-zonal boundaries and figure 6
shows the approach taken to decompose the domain into parts which are
separately distributed to the worker processors by the manager.

5 Conclusions

The central point of this project is the development of a parallel framework for
developing FEM components, FEM discretisations, adaptive ness and multi-grid
solvers and their realisation in a CAD software package as shown, which directly
includes tools for parallelism and hardware-adapted high-performance in low
level kernel routines; completely platform independent. It is the special goal in
this project to realize and to optimize the algorithmic concepts used internally in
the environment for specific computers (Sun Solaris, Linux/Unix) and to adapt
the mathematical components to complex configurations. In this paper we have
presented an expressive parallel programming model implemented by a
framework in the Java language. We have not made any extension to the
language. The synchronization model is very simple and will be extended in
order to enlarge the application domain of our programming model.

28 Advances in Fluid Mechanics VI

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line)

References

[1] A. P. Peskin and G. R. Hardin, An object-oriented approach to general
purpose fluid dynamics software, Computers & Chemical Engineering,
Vol. 20, 1996, pp. 1043-1058.

[2] O. Munthe and H. P. Langtangen, Finite elements and object-oriented
implementation techniques in computational fluid dynamics, Computer
Methods Applied Mechanics and Engineering, Vol. 190, 2000, pp. 865-
888.

[3] S.-H. Sun and T. R. Marrero, An object-oriented programming approach
for heat and mass transfer related analyses, Computers & Chemical
Engineering, Vol. 22, 1998, pp. 1381-1385.

[4] D. S. Kershaw, M. K. Prasad, M. J. Shaw and J. L. Milovich, 3D element
Unstructured mesh ALE hydrodynamics, Computer Methods in Applied
Mechanics and Engineering, Vol. 158, 1998, pp. 81-116.

[5] P. Krysl and T. Belytschko, Object-oriented parallelization of explicit
structural dynamics with PVM, Computers & Structures, Vol. 66,1998,
pp. 259-273.

[6] M. Ginsberg, J. Hauser, J. E. Moreira, R. Morgan, J. C. Parsons and T. J.
Wielenga, Panel session: future directions and challenges for Java
implementations of numeric-intensive industrial applications, Advances in
EngineeringSoftware, Vol.31, 2000,pp.743-751.

Advances in Fluid Mechanics VI 29

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line)

