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Abstract

The concept of evolutionary algorithms (EAs) is used to solve the 2-D incompress-
ible Navier-Stokes equations. EAs operate on the principle of natural selection,
where candidate solutions compete for survival and are given a chance to sur-
vive in accordance with their fitness. In an earlier paper the method was described
in detail, with particular emphasis on the various evolutionary operators. In this
paper, examples are given on applying the evolutionary solver to practical engi-
neering problems such as viscous flow in channels with multiple contractions and
expansions. One of the fundamental qualities of this type of solver is its relative
indifference to places of high gradients in the flow field. This, in turn, helps cir-
cumvent many of the problems related to the stiffness of the system of equations.
We believe the method has great value in tackling fluid flow problems where con-
ventional methods fail to achieve timely convergence.
Keywords: evolutionary algorithms, Navier-Stokes, divergence, mutation.

1 Introduction

Many problems in computational fluid dynamics suffer from occasional diver-
gence or slow convergence, depending on the discretization, types of boundary
conditions and scale of flow phenomena. This is especially evident when contin-
uum discretization schemes are combined with gradient-based iterative solution
techniques. A good example of such convergence problem is the solution of the
Navier-Stokes equations. Typical methods such as finite element and finite volume
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can face such difficulties. For example, the methods can progress the solution in an
acceptable manner at an acceptable rate until, for example, certain pressure modes
of the solution are reached where the solution diverges suddenly, often over a very
small number of iterations. There is a need for a non-standard solution technique
that can take over the solution process upon incipient divergence or very slow
convergence. Evolutionary algorithms are very good candidates to be such rescue
techniques.

Evolutionary algorithms are stochastic search and optimization techniques that
are based on the principle of natural selection [2]. They have been used exten-
sively and successfully in many optimization problems, especially when the search
domain is large and nonconvex. Here, they are used to heuristically optimize the
solution to the Navier-Stokes equations by evolving a population of potential solu-
tions and allowing natural selection to promote highly fit members of the popula-
tion until an acceptable level of fitness is reached.

The use of evolutionary-type optimization algorithms in CFD is not new. How-
ever, most applications were focused on optimization of shapes for pressure drop
requirements and aerodynamic performance of airfoil and like objects [3–7]. But
recently, EAs as fluid flow meta-solvers have seen a promising initiation. In [1],
Bourisli and Kaminski introduced a new strategy for adapting an evolutionary
algorithm to act as a go to solver to be activated when common methods fail to
achieve convergence. The method was successfully applied to a sudden expansion
problem involving thousands of nodes. Subsequent research in the area followed
with more applications [8,9]. In this paper, the method is applied to the full Navier-
Stokes equations. The EA solver is designed to be used as a go to solver once the
basic gradient-based solvers, which can certainly be faster, come close to failure.

2 The evolutionary algorithm

An evolutionary algorithm comprises of four basic operators to mimic the biolog-
ical evolution process. Similar to biological reproduction steps in haploid organ-
isms, a crossover operator cuts and recombines the series of arrays at a single or
more points, not necessarily in the middle as in humans. Randomness is introduced
via a mutation operator that changes the value of one allele randomly. To simulate
nature, the algorithm requires an objective function that can differentiate between
chromosomes based on their fitness. Finally, an appropriate selection scheme is
used to select parents for future generations in the volution process.

From our experience, it was clear that the simple, one-size-fits-all evolution-
ary algorithm is hardly efficient in solving any but the basic combinatorial prob-
lems that can be accurately cast in pseudo-binary form. In order to have an effi-
cient search mechanism, knowledge about the problem and the expected nature of
the solution must be incorporated into specially designed evolutionary operators.
Some authors prefer to call the resulting algorithms evolution programs because
of the specific intended use [10]. Since fluid flow is a new area in evolution-
ary computations, a number of old, altered and newly conceived operators were
used. These include: arithmetical and uniform crossover, uniform, nonuniform,
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Figure 1: Sample staggered finite volume mesh.

fitness-guided, random-average, and block mutation, population shuffling, gradient-
based smoothing, in addition to elitism. The various old and new components are
described in detail in [8]. Here, we only discuss the objective function needed to
measure relative fitness of the chromosomes.

The objective function used here is based on a staggered finite volume dis-
cretization of the flow domain, shown in Figure 1. The flow obeys the steady,
incompressible Navier-Stokes equations of motion,
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The equations are linearized with respect to the convective terms in the momen-
tum equations, resulting in coupled algebraic equations. With Poisson’s pressure
equation substituted for the continuity equation, the three equations are

aP pP = aS pS + aE pE + aN pN + aW pW + b (4)

apup = asus + aeue + anun + awuw + Ap(pW − pP ) (5)

apvp = asvs + aeve + anvn + awvw + Ap(pS − pP ) (6)

where the various coefficients are functions of geometry and properties of the fluid.
The unknown pressures are defined on non-staggered control volumes such as the
one shown in Figure 2. The detailed calculation procedures of the different coeffi-
cients are described in detail in [8].

Normally in CFD modeling, these equations are solved iteratively using an
appropriate method such as TDMA while using the resulting pressure field to
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Figure 2: Sample staggered finite volume grid for calculating pressure residuals.

update velocities. The evolutionary algorithm, however, directly uses the resid-
uals of these algebraic equations as an objective measure of the fitness of each
chromosome. The resulting form of the objective function is a linear combination
of the three residuals for the pressure, x-velocity, and y-velocity equations,

rp =
∣∣ − aP pP + aS pS + aE pE + aN pN + aW pW + b

∣∣ (7a)

ru =
∣∣ − ap up + Σ anb unb + Ap (pW − pP )

∣∣ (7b)

rv =
∣∣ − ap vp + Σ anb vnb + Ap (pS − pP )

∣∣ (7c)

The actual fitness of a chromosome is defined as the exponential of the maxi-
mum residual, rm, among all interior nodes. This bounds the fitness to be in the
interval [0,1] and gives universal assessment of fitness values among different EA
runs. In other words,

f = e−rm where, rm = max
1≤i≤Nx
1≤j≤Ny

ri,j (8)

A population is taken to be an initially random set of potential solution to the
fluid flow problem. These can be any 2D or 3D structures. For 2D problems a
two-dimensional array of random real numbers is sufficient. To save effort on the
evolutionary algorithm, a proper starting point is given as a gradient method output
after a few iterations just enough to set the fluid in motion and provide a starting
scale for the semi-random initialization of the velocities and pressure.
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Figure 3: Velocity vectors superimposed on pressure distribution in the flow
domain. Actual aspect ratio of the channel is 12-to-1, scaled for
appearance.

3 Numerical results and discussion

A channel with a 12-to-1 aspect ratio with three consecutive double steps is mod-
eled. The top and bottom steps simulate 2-to-1, 5-to-2, and 3-to-1 contractions
followed by inverse expansions. The flow field is discretized using 6,771 control
volumes for a total of about 20,313 unknowns. A population of 40 chromosomes
was used, which is slightly higher than what was previously advised but is war-
ranted because of the relative complexity of the present flow situation (cf. [1],
where a population size of 18 was determined to be optimum for a potential flow
problem.) Other parameters of the simulation are listed in Table 1.

At a Reynolds number of about 55 based on channel width, three different fea-
tures of the flow are present behind the three different expansions. Specifically,
behind the first mild expansion, small eddies develop immediately behind the step
and smaller eddies develop in the diagonally opposite corners. As a result, the
stagnation point is on the top and bottom surfaces. After the second expansion, the
eddies elongate to fill the whole length until the next walls, shifting the stagnation
points to the opposite walls (the contractions). After the third and last expansion,
the stagnation points are in their usual place at the reattachment points.

The evolutionary algorithm was able to converge to the correct solution, as
shown in Figure 3, after 127 sweeps-through, constituting 6,292 generations. The
locations of the eddies were found exactly, as validated by two standard finite vol-
ume solvers.

The ability to arrive at a valid solution stresses the importance of the evolution-
ary operators. It is known that the EA does not actually solve any set of equations;
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Figure 4: Progress of the fittest individual fitness and the corresponding maximum
residual in the domain nodes.

it only looks at their residuals and uses them to assess the fitness of the chromo-
somes (or potential solutions.) Natural selection then promotes the survival of the
more fit chromosomes from one generation to the next. Therefore, all the improve-
ments in the phenotypic (relating to fitness) come from operators work on the
genes themselves. This validates past conclusions that operators have to be spe-
cially designed with proper knowledge of the search domain.

The nature of the heuristic search has another important quality that can be
paramount in a number of other real CFD problems. Namely, the search is indiffer-
ent to places of high gradients in the flow field, a source of computational difficulty
for most algorithms. The effort needed to solve this problem is closely comparable
to that observed for solving a straight channel flow with no obstacles. Many prob-
lems involving sharp changes in variables can benefit greatly from such attributes,
such as flow with shockwave.

Another test for the EA was its ability to show the expected symmetry in the
output solution. At times, the excessive use of one or another operator might cause
a drift in the resulting genes. For example, if the block mutation was excessively
applied to a subset of the domain where the building blocks were not influential,
the chromosome itself would not necessarily realize the damage right away. Sup-
pose that this chromosome has an otherwise very high fitness. Then each time it
gets selected for reproduction the area of unrealistically-lowered or -raised blocks
will spread to future offspring. The drift noticed in these runs of the algorithm
were barely noticeable because of both the design of the operators and the low
probabilities of application of most all large-scale operators.
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The progress of the evolutionary algorithm is shown in Figure 4. The fitness
of the elitist and the corresponding maximum residual in the flow field are plot-
ted against the overall sweep-through number. The convergence of the EA to the
acceptable threshold is noticed by the steady rise in fitness and drop in residual.
The final solution, when ran through the SIMPLER finite volume algorithm, for
example, gives a pressure correction term magnitude of less than 10−5, which is
considered convergent by any standard.

It is noted, however, by looking and the figure and from our experience, that
the population maximum and average fitness do not improve considerably beyond
a certain point in the search. A simple yet not entirely complete explanation is
that the random search loses all ability to fine-tune highly fit chromosomes after
a given level of fitness is reached. It so happened that the operators were effective
enough to carry the population so far such that when convergence was reached the
solution was acceptable.

The underlying cause of such loss is the inability of the individual operators
to introduce enough randomness to explore the search domain efficiently. This
reason has been a fundamental hurdle in the face of past research in this area.
The introduction of smart operators such as fitness-guided mutation weighs the
amount of randomness supplied to each chromosome in a proportional amount to
its fitness. This introduces useful diversity to the population, the backbone of a
successful evolution.

4 Conclusions and future work

The current work is another step toward the inclusion of evolutionary techniques
in the group of dependable CFD meta-solvers. The problem of viscous flow in a
channel with multiple size contractions and expansions was solved using an evolu-
tionary algorithm. The EA optimizer succeeded in arriving at a converged solution
to the problem capturing fundamental physical behavior, expected symmetry of
solution, and robustness of application.

It should be noted that this problem in particular could be solved using standard
gradient-based techniques, albeit with very low relaxation factors. Low relaxation
factors were even needed when validation was done using the Fluent segregated
solver. This was necessary because it shows that the EA solver is able to negotiate
nontrivial CFD problems while we still have the chance to validate its results. The
application of the EA solver to nonconvergent problems altogether is discussed
in [9].

Regarding the requirement of an operator to scale its randomness up and down
depending on the degree of convergence and diversity in the population, the use
of a fuzzy logic is an attractive logical next step. The use of a fuzzy controller to
perform crossover was explored briefly in [11, 12]. In order to achieve the much
needed consistent improvement of evolution over all ranges of diversity and fitness,
better control over the operators, mutation in particular, at the genotypic level is
still needed.
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