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Abstract 

The aim of this study is to verify the use of a newly developed drag model in the 
simulation of fluidized beds. The drag model is based on a geometric description 
of the geometry found in a fluidised bed, treating it as a spatially and temporally 
variable inhomogeneous, locally isotropic, porous medium. Account is taken of 
the fact that flow conditions in low porosity parts of a bed can be viewed as flow 
between particles. At high porosities the bed resembles flow past the particles of 
a dilute assemblage and for that the current model is complemented with results 
from other models. The new drag model, as well as other models found in 
literature, was tested in the numerical simulations. Computational results are 
compared mutually, as well as to experimental data, and the differences and 
discrepancies discussed. 
Keywords: fluidized bed, numerical simulation, drag model. 

1 Introduction 

Fluidized beds are widely used in industrial chemical processes. In a fluidized 
bed gas is passing upwards through a bed of particles and the earliest 
applications of fluidization were for the purpose of enhancing chemical 
reactions. Fluidized beds in chemical industry include two main types of 
reactions, catalytic gas phase reactions and gas-solid reactions. In catalytic gas 
phase reactions the particles are not undergoing any chemical reaction. This is 
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the principal of oil cracking for manufacturing of various chemical substances. In 
gas-solid reactions the fluidized particles are involved in the reactions and 
undergo a phase change. An example of this type of process is combustion or 
gasification of coal. Other application of fluidized beds are drying and coating of 
solids.  
     Fluidized beds are applied in industry due to their large contact area between 
phases, which enhances chemical reactions, heat transfer and mass transfer. The 
efficiency of fluidized beds is highly dependent of flow behaviour and 
knowledge about flow behaviour is essentially for scaling, design and 
optimisation. Computational fluid dynamics (CFD) has during the last decades 
become a useful tool in predicting flow behaviour in fluidized bed processes. 
However, further model development and verification of the model and the 
numerical procedure are still needed.  
     Gravity and drag are the most predominant terms in the solid phase 
momentum equation and the application of different drag models has significant 
impact on the flow of the solid phase by differently influencing the predicted bed 
expansion and the solid concentration in the dense phase regions of the bed. 
Yasuna et al [1], Halvorsen and Mathiesen [2], Ibsen [3] and Bokkers et al [4] 
showed that the solution of their models is sensitive to the drag coefficient. In 
general, the performance of most current models depends on the accuracy of the 
drag formulation.  
     The Ergun Equation [5], Bird et al [6] is frequently used as drag model for 
calculating pressure gradients during flow in a fluidized beds. An updated value 
for the first coefficient in the Ergun equation from 150 to 180 was reported by 
MacDonald et al [7] and may also be used as an improved empirical model. Both 
were, however, derived empirically for Newtonian flow through packed beds in a 
fairly narrow band of porosities around 40% and their generalization to more 
general physical situations cannot be performed, but in an approximate and 
empirical manner.  In active fluidized beds the void fraction can change over the 
full range from zero through unity and the model used in numerical simulations 
should be equally versatile.   
     The Ergun equation may be written as follows [5]: 
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where ε is the porosity and Re the local Reynolds number expressed by: 
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and q is the superficial velocity: 
 sg UUq −= ε         (3) 

Here Ug and Us are the local gas and solid velocities respectively. 
     Gidaspow [8] combined the Ergun equation with the equations of Rowe [9] 
and Wen and Yu [10] to get a drag model that can cover the whole range of 
porosities. The following equation of Wen and Yu is used for a voidage above 
0.80: 
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Rowe [9] related the friction coefficient, CD, to Reynolds number by: 
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The particle Reynolds number, Res, is expressed by: 
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The MacDonald drag model is given, for the entire range of porosities, by: 
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Gibilaro et al [11] proposed the following drag model: 
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where the friction coefficient, CD, is expressed by: 
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2 The proposed drag model 

The deterministic model presented here is based on a fixed simplistic 
geometrical layout but the voidage can take any value according to the properties 
found within any part of the bed Du Plessis [12].  Flow conditions are then 
assumed according to the geometry of the flow passages, the void fraction and 
the interstitial Reynolds number. In this manner elaboration towards more 
complex behaviour can be performed in a systematic manner and discrepancies 
and unexpected behavioural characteristics can be analysed in a scientific 
manner. The local Reynolds number at any point in the bed is defined as above. 
The Reynolds number is taken into account when determining the local drag 
coefficient. 

2.1 Creep flow solution at low Reynolds number flow 

The low voidage drag model of Du Plessis was improved for creep flow relative 
to an isotropic granular material, Woudberg et al [13]. Since it is impossible to 
envisage an isotropic geometric arrangement of particles it is assumed that the 
properties of an isotropic medium are resembled by the average of the properties 
of flow in three perpendicular directions though an arrangement where the 
particles are maximally (fully) staggered in one direction and non-staggered in 
the other two directions. In the one direction the flow thus experiences a fully 

Advances in Fluid Mechanics VI  5

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



staggered configuration with maximal tortuosity of the streamlines.  In the other 
two directions the flow lines are straight and stagnant regions are formed 
between streamwise adjacent solid particles.  
     At high voidages creep flow through an assemblage of particles is more 
appropriately considered as flow past each of the particles than as flow between 
solid constituents. A model proposed by Hasimoto [14], for flow past a particle 
that is imbedded in an assemblage of other particles is therefore used in the 
present work to describe the creep flow situation at high voidage factors.  It may 
also be noted that there is no large difference between the flow conditions in 
regular or staggered arrays when the voidage is high. 
     An asymptotic matching technique Churchill and Usagi [15] is used to 
combine the two asymptotic solutions into one equation, facilitating their use in 
numerical simulations. This combined equation for all voidage factors is then 
considered as an asymptotic condition for creep flow situations in the bed. 

2.2 Inertial flow solution at intermediate Reynolds number flow 

In regions where the Reynolds number is well above unity, local areas of 
recirculation develop at the lee side of particles, giving rise to inertial effects in 
the so-called Forchheimer regime.  These effects can be modelled as momentum 
effects resulting in a pressure drop over each particle. This is not yet in the 
turbulence regime but, since numerous experiments (e.g. MacDonald et al) 
suggest a fairly established asymptotic behaviour, these laminar conditions will 
be considered as adhering to an asymptotic law at intermediate Reynolds number 
values of flow locally within in the bed.   

2.3 Asymptote matching 

The asymptote matching technique is again applied to match two asymptotic 
solutions, namely that of creep flow and that of inertial but still laminar flow 
Woudberg [16], resulting in equation (10), where F is the drag factor (inverse of 
the permeability) and D the average grain diameter.  Here the first and last terms 
respectively reflect the creep solutions at low and high voidage and the middle 
term the inertial flow conditions when interstitial recirculation occurs. 
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If the present solution is compared to the existing models, the coefficients A and 
B of the Ergun equation are functions of the void fraction, respectively as 
follows: 
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     It is interesting to note that the new model yields an effective B-value that 
decreases almost linearly from 2.25 at zero voidage to unity at total voidage. 
Conversely the coefficient A is predicted as 185 at very low voidage, increasing 
steadily to about 785 at a voidage factor of unity.  Differences in magnitudes 
among the models are thus evident and this should reflect in the drag profiles 
predicted. 

3 Physical description of bed dynamics 

Computational and experimental studies have been performed on a 2-D fluidized 
bed with a central jet. The advantage of using a bed with a jet is that the jet 
establishes the flow pattern, and this problem is easier to model than uniform 
fluidization. In the experimental studies a digital video camera was used to 
measure bubble sizes and bubble velocities. 
     Spherical glass particles with a mean diameter of 490 µm are used in the 
experiments and the simulations. For these particles the inter-particle forces are 
negligible and bubbles are formed as the gas velocity reaches the minimum 
fluidization velocity, Geldart [17]. The bed expansion is small compared to other 
types of particles. Small bubbles are formed close to the air distributor and the 
bubble size increase with distance above the distributor. The bubble size also 
increases with the excess gas velocity which is defined as the difference between 
the gas velocity and the minimum fluidization velocity, Geldart [17]. 
Coalescence is the predominant phenomenon of this group of powders and the 
bubble size is roughly independent of mean particle size. Most bubbles rise faster 
than the interstitial gas velocity.  

4 Computational procedure 

The computational work is performed by using the CFD model (FLOTRACS-
MP-3D). The CFD code is based on a multi-fluid Eulerian description of the 
phases. The kinetic theory for granular flow forms the basis for the turbulence 
modelling of the solid phase. The CFD code was proposed by Mathiesen et al 
[18] and modified by Halvorsen [19] to improve its use in dense particle systems 
like bubbling fluidized beds. At high solid volume fraction, sustained contacts 
between particles occur and the resulting frictional stresses must be accounted 
for in the description of the solid phase stress.  
     FLOTRACS-MP-3D is a gas/solid flow model, which is generalized for one 
gas phase and N number of solid phases. The gas phase turbulence is modelled 
by a sub-grid scale (SGS) model proposed by Deardorff [20]. The largest scales 
are simulated directly, whereas the small scales are modelled with the SGS 
turbulence model. In order to model the fluctuations in the solid phases a 

Advances in Fluid Mechanics VI  7

 © 2006 WIT PressWIT Transactions on Engineering Sciences, Vol 52,
 www.witpress.com, ISSN 1743-3533 (on-line) 



conservation equation for granular temperature is solved for each solid phase. 
The governing equations given are solved by a finite volume method, where the 
calculation domain is divided into a finite number of non-overlapping control 
volumes. The simulations are performed using two-dimensional Cartesian co-
ordinates. 
     The conservation equations are integrated in space and time. This integration 
is performed using second order upwind differencing in space and is fully 
implicit in time. The set of algebraic equations is solved by a tri-diagonal matrix 
algorithm (TDMA), except for the volume fraction where a point iteration 
method is used. Partial elimination algorithm (PEA) generalized to multiple 
phases is used to decouple the drag forces. The inter-phase slip algorithm (IPSA) 
is used to take care of the coupling between the continuity and the velocity 
equations.  

4.1 Computational set-up and results 

A two-dimensional Cartesian co-ordinate system is used to describe the 
geometry. The grid is uniform in both horizontal and vertical direction. 
Computational set-up for glass particles is given in Table 1. Simulations have 
been run with one solid phase of identical particles, all of the same size.  

Table 1:  Computational set-up and conditions, glass particles. 

Design:  Grid:  
Height  63.0 cm Horizontal grid size  5.0 mm 
Width  19.5 cm Vertical grid size 10.0 mm 
Initial bed height 33.6 cm   
Initial voidage 0.50   
Glass particles  Flow specifications:  
Mean diameter 490 µm Jet velocity 4.90 m/s 
  Fluidization velocity 0.29 m/s 
  Maximum volume 

fraction of solids 
0.64356 

 
     Simulations are performed with the drag models of Du Plessis and Woudberg, 
Ergun/Wen and Yu, MacDonald et al and Gibilaro et al as described above. 
Figure 1 shows a comparison of the experimental and computational bubbles at 
time 320 ms. It can be seen that the simulations with the models of Du Plessis, 
Ergun/Wen and Yu and MacDonald give very good agreement with the 
experiment according to bubble velocity. These models also give a symmetric 
bubble. Further comparison of these three models with the experimental result 
show that the Ergun model gives the most realistic bubble size and bed 
expansion. The Du Plessis model gives a slightly larger bubble and a higher bed 
expansion than the MacDonald model. The Gibilaro model gives an 
unsymmetrical first bubble and the bubble velocity differs significantly from the 
experimental bubble velocity. The bed expansion is too low and unphysical high 
solid fractions are observed. 
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    t=320 ms t=320 ms  t=320 ms t=320 ms       t=320 ms 
(Du Plessis)   (Ergun,Wen and Yu)   (experimental)     (MacDonald)    (Gibilaro) 

Figure 1: Computational vs. experimental bubble at time 320 ms. 

 

   
    t=620 ms t=600 ms  t=740 ms t=620 ms       t=540 ms 
(Du Plessis)   (Ergun, Wen and Yu)   (experimental)     (MacDonald)    (Gibilaro) 
 

Figure 2: Computational vs. experimental bubble near the top of the bed. 

     Figure 2 shows a comparison of the computational and experimental result at 
the time when the first bubbles erupt. Also at this level the Gibilaro model differ 
considerably from the others. For all the models the time between bubble 
creation and bubble eruption is shorter than for the experimental bubble. It can 
also be seen that all the models give continuous bubble formation. The Ergun 
and the MacDonald models give about the same shape and velocity for the 
second bubble. The Du Plessis and the Gibilaro models give the best agreement 
with the subsequent experimental bubble according to shape and size. 
     The two figures above show that the computational bubble behaviour is 
influenced significantly by the particular drag model used. Figures 3 and 4 show 
the computational drag (FD2) as a function of radial position in the bed at height 
0.2 m and 0.3 m respectively. The drag is averaged over a time lapse of 800 ms. 
It can be seen from Figure 3 that the drag is low in the centre of the bed where 
the bubbles are located, and the drag increases towards the walls where the 
particle concentration is high. At height 0.2 m Du Plessis, Ergun and MacDonald 
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predict about the same drag in the centre of the bed. There are some 
discrepancies between the models towards the walls. The Gibilaro model gives a 
lower drag than the other models in all radial positions at this height.  
     At a height 0.3 m in the bed, the bubbles erupt or are about to erupt. This can 
be seen from the drag profile shown in Figure 4. Du Plessis, Ergun and 
MacDonald predict about the same drag profiles. The drag is rather low in all 
positions, but some peaks with higher drag are observed in the centre and in a 
middle core, which indicates a higher particle concentration in these areas. Also 
at height 0.3 m Gibilaro’s model differ significantly from the others. Gibilaro’s 
model gives a drag close to zero which indicates that there are almost no 
particles at this height.  
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Figure 3: Drag (FD2) as a function of radial position at height 0.2 m in the 

bed. 
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Figure 4: Drag (FD2) as a function of radial position at height 0.3 m in the 

bed. 
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5 Discussion 

Different drag models were investigated and their predictions for bubble 
behaviour in a fluidized bed compared with experimental measurements.  
Although the overall trends are the same there are some particular discrepancies 
among the models and further careful investigations are needed for conclusive 
statements. It seems, however, that the model of Du Plessis and Woudberg is the 
most promising, since it involves no empirical coefficients and, based on the 
physical conditions in the bed, adaptations towards improvement could be made 
in a structured manner. Another positive point of this model is that the same 
model is used over the whole range of voidages and Reynolds numbers found in 
a bed. 
     In simulation of dense particle systems it is important to avoid unphysical 
high packing. It was observed that the Gibilaro drag model gave a too low bed 
expansion and too high particle concentrations in parts of the bed. The Du 
Plessis and Woudberg model gave the highest bed expansion and this might give 
a more symmetric bed and continuous bubble formation over time. This will be 
studied in further work. 
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