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ABSTRACT
This paper proposes a simultaneous optimal design method of asymmetric large-scale space frames 
with tuned mass dampers (TMDs). The objective function is defi ned by the maximum absolute accel-
eration response of the structure to input ground motions of sine waves. Sine waves of periods with the 
fi ve natural periods having large modal participation factors of the structure are input, and the maxi-
mum responses are calculated by time–history response analysis to evaluate the objective function. The 
shape of the space frame, i.e. nodal coordinates of the space frame’s joints, is described by a Bézier 
surface to reduce the number of design variables. The change from the initial values of the nodal coordi-
nates is constrained to preserve the initial design shape, which is provided by an architect. The method 
employs a genetic algorithm in optimization. In addition, a case study is conducted for an asymmetric 
steel space frame of a vault-like shape. The results confi rm the reduction of maximum absolute accel-
eration responses in the optimal shapes not only to the fi ve sine waves but also to four scaled ground 
motion records. Moreover, the presence of TMDs enables the reduction of the peak response value and 
maintains similarity to the initial shape.
Keywords: architectural design, Bézier surface, earthquake engineering, genetic algorithm, optimiza-
tion, seismic control, structural engineering, structural shape, space frame, tuned mass damper.

1 INTRODUCTION
In the design of large-scale space frames, the acceleration response and structural deforma-
tion should be reduced during an earthquake to minimize damages and improve the usability 
after such an event. However, accidental collapses and other damage to ceilings, as well as 
lighting equipment suspended from roof structures, occur often during earthquakes, such as 
the 1995 Kobe earthquake [1] and the 2011 Great East Japan earthquake [2]. Large-scale 
space frame structures, such as gymnasiums and stadiums, often serve as evacuation centers 
during such disasters. In addition, higher seismic performance is expected from such emer-
gency disaster facilities. These types of structures sometimes have esthetic shapes, developed 
by architectural designers. Hence, suffi cient seismic performance against severe ground 
motion is desired while maintaining unique and impressive building designs.

Vibration control devices are effective solutions for achieving these demands. A tuned 
mass damper (TMD) is one of the most popular seismic control systems. There have been 
many studies about the design and use of TMD in various structures. For example, Kaynia et 
al. [3] analyzed the effectiveness of a TMD against seismic inputs. Lin et al. [4] devised an 
optimal design method for a TMD by minimizing the mean-square displacement response 
ratio between structures with and without the installation of TMDs under earthquake excita-
tion. Johnson et al. [5] proposed to use a rooftop substructure as a TMD and showed that it 
can effectively reduce the acceleration response of the main structure. Kusunoki et al. [6] 
devised a methodology to realize the seismic control of a symmetric dorm structure using a 
TMD. Yoshinaka and Kawaguchi [7] proposed a seismic control system using multiple 
TMDs. However, these studies focused on symmetric structural models, such as dorm struc-
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tures so that the application of the TMD to large-scale structures with various shapes has not 
been confi rmed.

In addition, several studies have been conducted to design a dome shell and a space frame 
using optimization schemes. For example, Ramm et al. [8] proposed methods of structural 
optimization for the form fi nding and thickness design, and demonstrated the versatility of 
optimization schemes in shell design, such as the tuning of a bell and the form fi nding of a 
classical reinforced concrete dome shell. Ohsaki et al. [9] proposed a design method for a 
double-layer space truss, which is described by a parametric surface including a Bézier 
surface.

With respect to the optimization method, Goldberg [10] stated that genetic algorithms 
(GAs) have four differences compared with other classical optimization methods: (1) GAs 
manipulate coded versions of the problem parameters instead of the parameters themselves; 
thus, GAs fi nd approximate solutions, (2) while almost all conventional methods search from 
a single point, GAs always operate on a whole population of points, and it improves the 
robustness of the algorithm, while reducing the risk of becoming trapped in a local stationary 
point, (3) normal GAs do not use any auxiliary information about the objective function value 
such as derivatives; therefore, they can be applied to any kind of continuous or discrete opti-
mization problem, and (4) GAs use probabilistic transition operators, while conventional 
methods for continuous optimization apply deterministic transition operators; more specifi -
cally, there is some randomness to the way in which a new generation is computed from the 
actual one. Because of these advantages, GAs are preferred in a wide range of optimization 
problems and have been used in many structural optimization studies [11–16].

The authors proposed a design method for a large-scale space frame that simultaneously 
optimizes the structural shape and control system of the structure using a GA in the confer-
ence paper [17]. As an objective function of the optimization problem, the proposed method 
used the maximum acceleration response under some specifi c ground motions, and we 
adopted two sine waves with different periods, which are the natural periods with the fi rst 
and second largest modal participation factors. In this paper, the proposed method is modi-
fi ed and the fi ve natural periods with large modal participation factors are adopted for 
periods with input sine waves. Then, the effectiveness of the modifi ed method is analyzed to 
confi rm that it provides satisfactory performance in terms of the reduction of the seismic 
response.

2 STRUCTURAL MODELING

2.1 Bézier surface

In this paper, a space frame is modeled using fi nite elements. In general, a space frame has a 
large number of joints (nodes), and it is not effi cient when performing optimization directly 
using all node coordinates as design variables. Hence, a two-dimensional Bézier surface is 
utilized to reduce the number of design variables involved in the optimization. The control 
points of a Bézier surface are used as design variables, and the coordinate of each node is 
calculated based on the equation of the Bézier surface.

The initial shape is designed in the design space, which has 50-m length in X direction, 
30-m width in Y direction, and 15 m in Z direction. The initial shape of the structure model 
is shown in Fig. 1. Asymmetric roof structures are adopted as the initial design, and the 
related shape constraints are introduced in the optimization.
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A given Bézier surface of order (n, m) is defi ned by a set of (n + 1)(m + 1) control points ki,j. 
A two-dimensional Bézier surface can be defi ned as a parametric surface, on which the posi-
tion vector of a point p is given as a function of the parametric coordinates u and v, as follows:
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are a Bernstein polynomial and binomial coeffi cient, respectively.
In this paper, both n and m are set to 4 so that the described Bézier surface has the order (4, 

4). As seen in the initial shapes of the structural models shown in Fig. 1, the model has eight 
continuous beams in both X- and Y-directions, and there are 64 nodes in total. Using a Bézier 
surface of order (4, 4), the total number of control points is 25. Thus, the number of design 
variables is substantially reduced to less than half.

2.2 Structural parameters

Steel tubes are assumed to be the structural members, and the continuous beams are rigidly 
connected. In addition to the continuous beams, diagonal beams are inserted with pin joints, 
as shown in Fig. 1. The total number of members is 161, and each member is modeled with 
a single element of a linear elastic Euler beam with distributed mass. The external diameter, 
thickness, and mass density of each beam are 300 mm, 15 mm, and 7.85× 103 kg/m3, respec-
tively. The Young modulus and Poisson ratio are set to 206 GPa and 0.3, respectively.

Figure 1: Initial shape.
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The Rayleigh damping is used for structural damping, and the damping factors of both the 
fi rst and second modes (translational modes in the Y-direction) are set to 0.02. In this study, 
only roof structures are considered, and all endpoint joint nodes in the Y-direction are assumed 
to be supported by the rigid substructure with pin joints. Regarding the dead load, only the 
self-weight is considered for simplicity.

Figure 2 displays the fundamental mode shape of the initial shape. The modal shape of an 
asymmetric structure is complex, as all modes from the fi rst order to the highest order consist 
of mixed modes of three-dimensional translation and torsion. Thus, the classifi cation of 
vibration mode types is diffi cult.

The natural periods (fi rst to fi fth modes) of initial shape are shown in Table 1.

3 CONTROLLER MODELING

3.1 Control device

Numerous seismic control systems have been designed for buildings, and they can be classi-
fi ed into active, semi-active, and passive control systems depending on the presence of a 
power input. In general, semi-active and active control systems are more costly than passive 
ones because they need electrical power, sensors, and computers, which have to be repaired 
or replaced within a specifi c number of years. This paper focuses on passive control systems 
from a fi nancial point of view. In previous studies, such as in [6] and [7], the effectiveness of 
a TMD on seismic control has been confi rmed for a symmetric space frame. Thus, the same 
type of TMD is considered in this paper.

Table 1: Natural periods of lower modes of initial shape.

Mode number 1st 2nd 3rd 4th 5th
Natural period (s) 0.3948 0.2439 0.2286 0.1821 0.1361

Figure 2: Fundamental mode shape of the initial shape.
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3.2 Design of tuned mass damper

In general, the design of a TMD is determined by fi rst deciding the mass ratio μ of the coun-
ter weight of the TMD to the whole structure including the TMD and objective controlled 
modes. To derive the optimal parameters of the TMD, such as its mass, damping, and stiff-
ness, a method using the fi xed point theory proposed by Den Hartog [18], together with other 
related methods based on the fi xed point theory (e.g. Ikago et al. [19]), are well known. 
However, direct application of these methods to an asymmetric structure using multiple 
TMDs is not easy.

Thus, this paper proposes a design optimization method for a passive control system with 
multiple TMDs using GAs. The mass, damping, and stiffness of TMDs are included in the 
design variables, in addition to the control points of a Bézier surface, and their values are 
directly derived during the optimization.

As an example, this paper considers a seismic control system using two TMDs. The objec-
tive controlled mode of each TMD is selected based on the largest modal participation factor. 
Generally, the vertical seismic excitation of space frames is larger than that of normal build-
ings (e.g. Kato et al. [20]). Thus, it is important to consider vertical excitation in the design 
of a space frame. In this paper, the TMDs are set up on joint nodes that have the maximum 
amplitude in the objective mode vector, and the TMDs are assumed to only move in the ver-
tical direction.

4 OPTIMIZATION PROBLEM SETTINGS

4.1 Objective function

In this paper, an optimization problem is addressed to minimize the maximum absolute accel-
eration response to sine wave inputs of the roof structure of a large-scale space frame. It has 
been reported that the design a of the TMD system based on the response to sine wave inputs 
is preferable because the analysis result does not depend on the properties of the external 
force [6]. Thus, the responses to sine wave inputs are adopted as an objective function and the 
optimization aims to minimize the response value. In this study, sine wave ground accelera-
tion with the same period, phase, and amplitude is applied in the X-, Y-, and Z-directions 
simultaneously.

The method proposed in the previous paper uses two sine waves with different periods as 
input waves. The periods of input sine waves are selected according to the natural periods and 
modal participation factors of the structure. In the calculation, inputs are only applied in the 
translational direction and not in the rotational direction. Thus, the value of the distribution 
vector of the ground acceleration is 1 in translational directions and 0 in rotational directions. 
The modal participation factors are normalized according to the following equation:

 su
T M su = ⋅ =

=
∑
i

N

i s im u
1

2 1, (4)

where M and su are the mass matrix and th eigenvector, respectively, and N denotes the 
degrees of freedom. For example, when the mode number that has the largest modal partici-
pation factor is fi rst, the natural period of the fi rst mode is chosen as the period of a sine wave 
input. In this paper, we use fi ve sine wave inputs, and the periods are selected from natural 
periods of the modes with the fi rst to fi fth largest modal participation factors. Although the 
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number of sine wave inputs increases from two to fi ve compared with the previous method, 
the calculation time changes slightly, and the seismic performance of the optimal design is 
signifi cantly improved, as described later. To confi rm the validity of the proposed method, in 
the calculation of the objective function, we compared seven optimization results that were 
derived using only a single sine wave input with a specifi c period. The seven specifi c periods 
of the sine wave are shown in Table 2. According to Table 1, the natural periods of the initial 
shape structure are all <0.5 s. Hence, it is expected that sine waves with the periods shorter 
than 0.5 s are relatively critical as input waves. The sine waves are input for duration often 
times longer than each sine wave period to enable the system response to attain steady state.

4.2 Design variables

This paper considers two different optimization problems. One is the case of a system with-
out any TMDs; this is a single objective optimization of the structural shape. The other is the 
case of a system with two TMDs; this is the simultaneous optimization of the structural shape 
and control system. In both cases, the control point coordinates of a Bézier surface are 
selected as design variables. In addition, the mass, damping, and stiffness of the TMDs are 
included in the design variables in the second case, which is a system with TMDs.

4.3 Constraints

One of the aims of this paper is to satisfy the intended design of an architectural designer with 
respect to a structural shape. This is realized through the optimization process by setting 
constraints for the variation between the positions of each node of the initial and optimal 
shapes. In this paper, the maximum variation is set to one-fourth of the structure span.

4.4 Optimization problem

The optimization problem setting is shown in Table 3.
Here ui, j(t), ugj(t), x, and x0 are the displacement of the th node under jth sine wave input, 

ground displacement of jth sine wave input, and nodal position vectors of the optimal and 
initial designs, respectively. In the previous and proposed methods, the maximum number of  
j is two and fi ve, respectively. B0,0, B0,1,…, B4,4 are the control point vectors of a Bézier sur-
face of order (4, 4). mTMD, cTMD, and kTMD are the mass, damping, and stiffness vector of 
TMDs, respectively.

5 OPTIMIZATION RESULTS

5.1 Results of sine wave input analyses

Figure 3 shows the examples of the results of sine wave input analyses. The optimization 
aims to minimize the maximum absolute response value to sine wave inputs in the steady 
state, such as shown in Fig. 3.

Table 2: Periods of sine wave inputs in compared optimizations.

Period (s) 0.1 0.2 0.3 0.5 1.0 2.0 5.0
Duration (s) 1.0 2.0 3.0 5.0 10 20 50



170 M. Dan & M. Kohiyama, Int. J. of Safety and Security Eng., Vol. 4, No. 2 (2014)

The natural periods of lower modes of the system without and with TMDs for seven sine 
wave inputs are shown in Tables 4 and 5. In addition, the natural periods of the proposed 
method are also shown in Tables 4 and 5.

The optimal parameters of two TMDs derived by GAs are shown in Table 6. These can be 
derived directly through a GA optimization method.

Table 3: Optimization problem setting.

System without TMDs System with TMDs

Objective function J t tu u
t i j
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Design variables B0,0, B0,1,…, B4,4 B0,0, B0,1,…, B4,4, mTMD, cTMD, kTMD

Figure 3: Examples of the results of sine wave input analyses. Period: (a) 0.2 s and (b) 1.0 s.

Table 4:  Natural periods (fi rst to fi fth) of the optimal design in the case of a system without 
TMDs.

Period of sine wave (s)

Natural period (s)

1st 2nd 3rd 4th 5th

0.1 0.3789 0.2607 0.2168 0.1806 0.1308
0.2 0.3270 0.2523 0.1585 0.1534 0.1303
0.3 0.3706 0.2473 0.2201 0.1709 0.1416
0.5 0.3598 0.2526 0.2099 0.1708 0.1269
1.0 0.2781 0.2278 0.1707 0.1507 0.1356
2.0 0.3355 0.2300 0.1866 0.1658 0.1391
5.0 0.3493 0.2380 0.2128 0.1593 0.1247
Previous method 0.3424 0.2875 0.2132 0.1680 0.1458
Proposed method 0.4505 0.3165 0.2293 0.1780 0.1674
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Table 5:  Natural periods (fi rst to fi fth) of the optimal design in the case of a system with 
TMDs.

Period of sine wave (s)

Natural period (s)

1st 2nd 3rd 4th 5th

0.1 0.3751 0.2626 0.2268 0.1813 0.1385
0.2 0.3620 0.2567 0.1745 0.1620 0.1309
0.3 0.3832 0.2444 0.2119 0.1738 0.1301
0.5 0.3991 0.2688 0.2147 0.1691 0.1652
1.0 0.3144 0.2725 0.2358 0.1584 0.1442
2.0 0.4164 0.3107 0.2159 0.1829 0.1736
5.0 0.3763 0.2604 0.2078 0.1769 0.1346
Previous method 0.3567 0.2774 0.2216 0.1772 0.1394
Proposed method 0.2165 0.1959 0.1948 0.1839 0.1552

Table 6: Optimal parameters of two TMDs.

TMD 1 TMD 2

Controlled mode 1st 3rd
Mass (kg) 10.03 8.910
Damping (Ns/m) 3.100 4.450
Stiffness (N/m) 63.73 148.2

Using the proposed method, the fundamental period becomes longer than that for the ini-
tial shape (0.3948 s) for a system without TMDs (0.4505 s) and becomes shorter than that for 
the initial shape for a system with TMDs (0.2165 s), as shown in Tables 4 and 5. For a system 
with TMDs, two TMDs are applied to reduce the maximum response of the 1st and 3rd 
modes, as shown in Table 6. According to the objective function shown in Table 3, the vibra-
tion modes to be reduced include not only the 1st and 3rd modes but also the 2nd, 4th, and 
5th modes. Therefore, the optimized design does not result in a shorter natural period; the 4th 
and 5th natural periods become longer than the 4th and 5th natural periods of the initial 
shape. Instead, it produces a narrower range of the fi ve natural periods, which improves the 
effectiveness of the two TMDs in damping the responses to the sine wave inputs with the 
same period as the 1st through 5th natural periods. For a system without TMDs, the optimal 
design produces a more extensive range of natural periods to prevent an increase in the 
response due to simultaneous excitations of multiple modes for a sine wave input.

5.2 Response under seismic ground motion

To confi rm the seismic performance of the structural shape and effectiveness of the TMD 
control system, time history analyses were conducted. Four records, El Centro 1940, Taft 
1952, Hachinohe 1968, and Takatori 1995, were selected as input waves. The input waves 
were scaled so that the maximum velocity of each component becomes 0.25 m/s. The NS, 
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EW, and UD component waves are inputs in the X-, Y-, and Z-directions, respectively. The 
power spectra of four input waves are shown in Fig. 4. El Centro and Taft have shorter period 
components; on the other hand, Hachinohe and Takatori have longer period components.

The maximum response values in the time–history response analyses are shown in Tables 
7–10. In Tables 7 and 8, the maximum response value when 0.2 s period sine wave is input 
is the smallest except the value of the proposed method in the case of a system with TMDs. 
On the other hand, it is not the best result in Tables 9 and 10. According to Fig. 4, El Centro 
and Taft waves have shorter period components; therefore, optimization results using shorter 

Figure 4:  Power spectra of scaled input seismic waves (the top, middle, and bottom show 
NS, EW, and UD components, respectively). (a) El Centro, (b) Taft, (c) Hachinohe, 
and (d) Takatori.
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Table 7: Maximum response values under El Centro wave.

Period of sine wave 
in optimization (s)

Absolute acceleration of node (m/s2)

Initial shape System without TMDs System with TMDs

0.1

8.974

4.750 4.338
0.2 5.908 3.640
0.3 8.171 8.483
0.5 7.177 5.818
1.0 4.892 4.204
2.0 3.918 5.236
5.0 8.056 6.433
Previous method 5.548 6.277
Proposed method 4.591 3.618

Table 8: Maximum response values under Taft wave.

Period of sine wave 
in optimization (s)

Absolute acceleration of node (m/s2)

Initial shape System without TMDs System with TMDs

0.1

11.93

12.16 6.470
0.2 9.908 5.610
0.3 10.32 11.56
0.5 8.938 7.837
1.0 8.709 7.916
2.0 8.981 7.419
5.0 10.73 9.081
Previous method 7.617 9.134
Proposed method 8.543 4.423

Table 9: Maximum response values under Hachinohe wave.

Period of sine wave 
in optimization (s)

Absolute acceleration of node (m/s2)

Initial shape System without TMDs System with TMDs

0.1

11.21

5.344 8.103
0.2 9.470 7.634
0.3 10.56 12.61
0.5 10.78 8.506
1.0 6.579 6.654
2.0 6.734 7.532
5.0 10.59 10.46
Previous method 8.486 9.045
Proposed method  6.353 3.364
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period sine wave inputs show better performance than others under these two input waves. 
However, under Hachinohe and Takatori waves, the optimization results do not show the 
best performance because these two input waves have longer period components. Thus, it 
can be concluded that the natural periods of the structure are appropriate for the period of 
the input sine wave in optimization as adopted in the proposed method. However, the results 
of the previous method are worse than the results of single sine wave input in many cases. 
On the other hand, all of the maximum response values of the proposed method are smaller 
than any of other results. Thus, it can be concluded that the optimal design of the proposed 
method show satisfactory performance under input ground motions with various frequency 
characteristics.

The results of the time–history response analyses are shown in Figs 5–8. In the right fi g-
ures of Figs 5–8, the time span is magnifi ed in which the peak response value is included. The 
proposed optimization method is confi rmed to be effective for reducing the seismic response. 
In particular, the peak response values of both optimal shapes without and with TMDs are 
signifi cantly reduced compared with that of the initial shape. However, in some cases, the 
response of the optimal shape with TMDs is larger than that without TMDs. This is possible 
because the frequency characteristic of the input ground motion affects the response; further 
research should be conducted using various input ground motions. In addition, the maximum 
response value of the optimal shape with TMDs is smaller than that without TMDs. Thus, the 

Figure 5:  Results of time–history response analyses under El Centro wave (the right: the 
time span including the peak response value is magnifi ed).

Table 10: Maximum response values under Takatori wave.

Period of sine wave 
in optimization (s)

Absolute acceleration of node (m/s2)

Initial shape System without TMDs System with TMDs

0.1

18.07

8.076 11.23
0.2 16.10 10.04
0.3 14.57 18.17
0.5 13.90 13.33
1.0 9.555 11.19
2.0 11.31 11.37
5.0 12.58 15.88
Previous method 11.51 12.99
Proposed method 8.893 3.883
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effectiveness of TMDs is also confi rmed, and the proposed optimization method can be con-
cluded to be useful for the design of an asymmetric large-scale space frame.

5.3 Results of the optimization

Figure 9 shows the initial shape, and the asterisk (∗) shows the node that has the maximum 
response in the time–history response analysis under conditions of the seismic ground motion 
explained in the next section. In this case, the maximum response occurred in the up–down 
(the Z-direction) component. The optimal shapes in the case of a system without and with 
TMDs are shown in Figs 10 and 11, respectively. In these cases, the maximum response also 
occurred in the up–down direction (the Z-direction) component.

Figure 8:  Results of time–history response analyses under Takatori wave (the right: the time 
span including the peak response value is magnifi ed).

Figure 7:  Results of time–history response analyses under Hachinohe wave (the right: the 
time span including the peak response value is magnifi ed).

Figure 6:  Results of time–history response analyses under Taft wave (the right: the time span 
including the peak response value is magnifi ed).
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TMDs enable us to keep a structural shape that implements the intended design of an archi-
tectural designer when used as a seismic control system.

6 CONCLUSIONS
This study proposed a method to obtain optimal design variables related to both structural 
shape and control devices simultaneously for asymmetric large-scale space frames with 
TMDs. As design variables, control node coordinates of a Bézier surface, which describes 
nodal coordinates of joints of the space frame, and parameters of TMDs were considered. 
The total number of design variables could be reduced by using a Bézier surface, and the 
change of the nodal coordinates of the space frame was constrained to keep a similar shape 
to the initial design provided by an architect. With respect to the objective function of the 

Figure 9: Initial shape and the maximum response node.
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Figure 10: Optimal shape in the case of a system without TMDs.
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optimal design problem, the maximum absolute acceleration response to fi ve sine wave 
inputs was adopted, of which periods were the same as the natural periods of the large modal 
participation factors. The method employed GA in the optimization.

In a validity study, a space frame structure with 64 joint nodes and 161 beams was examined. 
It is confi rmed that the proposed method could provide the optimal shape that comparatively 
reduces the maximum absolute acceleration response to sine wave inputs with the periods of 0.1, 
0.2, 0.3, 0.5, 1.0, 2.0, and 5.0 s. In addition, a time–history analysis was conducted using four 
scaled input ground motions: El Centro 1940, Taft 1952, Hachinohe 1968, and Takatori 1995. 
The results also confi rmed that the maximum absolute acceleration responses to the seismic 
ground motions were signifi cantly reduced in the optimal shapes; the employment of TMDs 
enabled the reduction of the peak response value and maintained similarity to the initial shape.

Although this study focused on TMDs as vibration control devices, other control systems, 
such as semi-active and active control systems, should be considered in future research. 
In introducing a semi-active or active control system to the large-scale space frame, the opti-
mization of a whole structure including both the roof and substructure should be considered. 
In addition, a comparison of these control systems based on their life-cycle cost is expected. 
Furthermore, it is important to specify clear constraints that can help architectural designers 
to design more esthetic and high-performance structures.
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