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ABSTRACT
The urban thermal environment deteriorates with increasing frequency of extreme heat events in cities. 
Conventionally, the Urban Heat Island (UHI) effect only reflects the temperature difference between 
the city and its rural surroundings. This scale of analysis is often too broad to help devise mitigation 
strategies, which are typically implemented at a more local scale within the sphere of urban planning 
and design. In this research, the city of Wuhan, China, is taken as an example. Through quantitative 
measurements, a workflow is proposed to mitigate the surface UHI of Wuhan, locally. Also, the satel-
lite images of the MODerate-resolution Imaging Spectroradiometer and Landsat-7 ETM+ are used for 
technical purposes, and the K-means clustering is applied to classify the Local Climate Zone (LCZ). 
Further, the Local Scale Urban Heat Island (LSUHI) is captured through morphological parameters, 
such as Multi-Scale Shape Index (MSSI) based upon the latent Land Surface Temperature (LST) pat-
tern. The mitigation process is organized hierarchically and prioritized by the combination of LCZ and 
LSUHI. Based on this, Wuhan is divided into seven LCZs and the LSUHI, in the mean time, can be 
detected by morphological parameters. We present the corresponding quantitative planning advice for 
places with higher heat threats in the city. This research is conducted on urban microclimate and urban 
planning on at least two levels: (1) the reduced study scale of urban thermal environment and (2) a 
planning-driven workflow of urban thermal environment optimization.
Keywords: climate zone, heat island, hotspot, land surface temperature, local scale, morphology.

1 INTRODUCTION
Global temperature continues to rise and cities may possess higher warming rates than natu-
ral land covers [1]. The phenomenon of higher temperature in urban areas is known as the 
Urban Heat Island (UHI). The physical mechanisms through which the UHI effect is driven 
are well documented. Primary constituents of urban construction, such as asphalt, cement, 
and roofing tiles, have a much greater heat capacity than forest vegetation and other natural 
features [2]. The enhanced anthropogenic heat emissions, reduced evaporative cooling, 
increased surface roughness, lower surface albedos and narrow urban canyon geometry asso-
ciated with cities also results in the formation of UHIs [3].

Tragic socio-economic consequences of urban heat events have been realized and addressed 
only lately. Most cities are reported to be without any form of regulations for temperature 
mitigation in terms of land surface management [4]. Even at the local level, some climate 
action plans that only considered greenhouse gas emission control were insufficient to address 
the problem [1].

1.1 The land surface specification in the local climate zones

One of the significant weaknesses of current research on microclimate is the lack of stand-
ards, which impedes both the quantitative measurement of meteorology phenomenon at a 
local scale and the development of local meteorological research of urban climate [5]. Most 
planning and design concepts are restricted by lack of quantitative standards that can mitigate 
and adapt climate uncertainties [1]. The weakness is quite intuitive in the study of 
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temperature patterns and variations at the local scale [6]. Building upon the concept of Urban 
Climate Zone (UCZ) and Local Climate Zone (LCZ) initiated by Oke’s (2011) research team, 
the research applies the idea to an entire city [7]. The LCZ is proposed such that the study of 
microclimate can be set into a standard background. The framework of LCZ recommends 
that the land surface should be classified into zones quantitatively according to their meteoro-
logical responses. The classification indicators include the surface material and meteorological 
properties. This can be further defined according to the surface configuration of a natural and 
a built environment, such as Impervious Surface Fraction (ISF) or Pervious Surface Fraction 
(PSF) [8–10], albedo [11–13], Sky View Factor (SVF) [14–16], the vegetation fraction [8, 
17–19], and building density [2, 20].

The LCZ is a framework that has been proposed recently, and has been validated through 
circling places with radius of hundreds of meters in few cities [21]. The application of the 
concept is rarely found. Szeged, Hungary, began to apply the framework to the whole city in 
2014 [22]. More applications and tests of the framework are needed to bring insights of the 
dynamics of local climate at the local scale.

1.2 Characterizing the surface urban heat Island

Conventionally, UHI is defined as the temperature difference between urban and rural areas. 
The investigations are largely influenced by the conventional ‘urban-rural’ dichotomy at the 
city scale [5]. The analyses of UHI aim at urban surface with remote sensing data and the 
findings of the specific relation between Land Surface temperature (LST) and air temperature 
[20]. LST became the primary concern because it governs the energy balance at the lowest 
layer of the atmosphere in the urban areas and controls the air temperature within the Urban 
Canopy Layer (UCL) [23]. When the temperature study boils down to investigate the LST 
within the UCL, UHI accordingly became the Surface Urban Heat Island (SUHI). A mile-
stone is the characterization of the city scale SUHI of Houston, Texas, USA, by applying the 
unimodal Gaussian surface to the fitting of the Advanced Very High Resolution Radiometer 
(AVHRR) image data [24]. An extension of the methodology is employing the non-paramet-
ric kernel method to model the LST and SUHI patterns in Indianapolis, Indiana, USA [25].

1.3 Research framework

Since the classification of LCZs is based upon a set of indicators that reflect certain meteoro-
logical properties of the study area, the LCZs provide a configuration of climatic ingredients 
of the area and depict how the climatic patterns of the area distribute locally. Based on the 
modified version of the Stewart’s (2011) LCZ scheme with a focus on LST, 9 LST-sensitive 
indicators are extracted from land surface factors and are used as the basis of classification 
for climate zones in Wuhan.

Based on the previous research of SUHI, the LST is further delineated with a combination 
of spatial and morphological information. In order to find out the prioritized areas with high 
temperature locally, the parameters are used as indicators to identify Local Scale Urban Heat 
Island (LSUHI).

LCZ provides the framework to mitigate LSUHI from the perspective of planning domains 
in two aspects. Firstly, the scope of LSUHI is limited to a single LCZ, rather than to the whole 
city. Secondly, the mitigation approaches for LSUHI are based on the classification indicators 
of LCZ. Then, the quantitative planning strategy is proposed by combining LCZ and LSUHI 
in hierarchies and priorities (Fig. 1). The research provides a workflow for the improvement 
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of urban climate in terms of planning and implementation. The workflow includes the clas-
sification of the climate zone, the detection of the hotspot, and the adjustment of relevant land 
surface parameters.

2 METHODOLOGY

2.1 Study area and data

Wuhan, China, is selected as the case study. The city is located in central China. It is the fifth 
most populous city in the nation. Wuhan is characterized by its heterogeneity of land cover. 
The water bodies scatter within and around the urban area highlighting the diversity of land 
composition. The extent of the study area is 45×36 km, which covers entire downtown Wuhan 
and extends to the surrounding rural area. The upper-left and lower-right coordinates are 
‘30°43′53″N, 114°4′49″E’ and ‘30°24′0″N, 114°32′34″E’, respectively. This coverage is suf-
ficient to exhibit the land composition of the city (Fig. 2a). The L1T product with the 
resolution of 30 meters in 2012 captured by Landsat-7 ETM+ is employed to measure the 
land surface indicators, including PSF, ISF, albedo, Vegetation Index (VI), Water Index (WI), 
etc. The indicators including SVF, Building Density (BD), Building Volume Density (BVD), 
and Building Height (BH), are measured through shapefile of building data in 2012 according 
to the relevant Wuhan governmental departments. The MODIS/Terra (MOD11A2) and 

Figure 1: The hierarchical structure and priority for optimizing urban thermal environment.

Figure 2:  Study area and its latent LST. (a) The study area represented by false color image. 
SWIR2, NIR, and Green bands of Landsat ETM+ are combined to highlight the 
land surface heterogeneity of built environment, vegetation, and water bodies. (b) 
The latent LST at 13:30h, July 27th, 2012, extracted by using Gaussian Process 
model.
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MODIS/Aqua (MYD11A2) V5 Daily L3 Global 1 km Grid products in 2012 are used to 
represent the LST pattern at a particular time point. The MYD11A2 data is acquired at 01:30h 
and 13:30h local time, and the MOD11A2 data is acquired at 10:30h and 22:30h local time. 
The accuracy of the LST data is better than 1K (0.5K in most cases). The LST is converted to 
Celsius degrees in this research. Before analyzing the morphology of LST, the Gaussian 
Process (GP) model [26] is used to extract the smooth and continuous latent pattern of LST 
as shown in Fig. 2b.

In the study of Wuhan, the variogram of LST at the phenomenon level and multi-scale 
analysis together define the operational scale of the LST–ISF interaction to be in the range of 
500–650 m. The value is reasonable considering the characteristics of Chinese cities [10]. So, 
the scale of this research for LST and LCZ is set at 500 m.

2.2 The indicators and classification for the LCZs

The LCZs are classified in terms of temperature-sensitive indicators extracted from land sur-
face factors. The indicators are selected empirically according to previous investigations of 
the land surface–LST relationships. For illustration, altogether 9 most frequently used LST 
sensitive land surface indicators extracted from vegetation, buildings, and land covers are 
used for classification. The indicators are SVF [27], BD, BVD [28], BH [17], PSF, albedo, 
VI, ISF, and WI [29]. Specifically, SVF is computed using vector databases based on meth-
odology from Gál [27]; VI is coverage of vegetation and WI is coverage of water, 
respectively.

The indicators are all unified to the same raster resolution with pixel size of 500 m. The 
indicators are considered as properties of a certain area of the land surface, which means for 
each pixel, its properties can be taken as a multi-dimensional vector. In this situation, the 
K-means clustering is applied for the reason that such classification approach utilizes the 
intrinsic structure of the data as opposed to artificial partition by using empirical values. In 
this study, the pixels can be viewed as n observations, and for each observation the properties 
is a d  dimensional vector P. All the pixels are in a d dimensional space (P1, P2…Pn). The 
K-means clustering separates the pixels into k sets to minimize the within-cluster sum of 
squares. Thus it tries to find

 arg min p −∑∑
=

µi
i

k
2

1

 (1)

where μi is the mean of cluster i.

2.3 The morphological indicators

The conventional parameters characterizing UHI are restricted to the city or regional scale by 
the ‘urban-rural’ dichotomy. This research identifies LSUHI through the morphology of LST 
at a local scale. The morphological indicators are based on the smooth and continuous latent 
pattern of the LST, which is derived by the Gaussian Process (GP) model [26]. The MSSI is 
an extension of Koenderink’s Shape Index (SI) [30] that evaluates shapes at the optimal scale. 
It thus contains two steps: 1) scale selection, and 2) the SI evaluation.

The SI of each pixel should be calculated at its appropriate scale. The scale selection 
adopts the scale space [31]. The characteristic scale can be found in terms of the kernel size 
that produces the maximum normalized distance in the scale space. The optimal scale can be 
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identified by the maxima normalized distance [32]. Then the MSSI is the SI evaluated at each 
point on a surface at the optimal scale, which is represented as

 MSSI =
+

−

2 2 1

2 1π

κ κ

κ κ

arctan , SI ∈ −[ , ]1 1 , (2) 

where κ1 and κ2 (κ κ1 2≥ ) are the principle curvatures. The principle curvatures can be easily 
evaluated from a noiseless continuous latent LST surface through eigenvalues of the Hessian 
matrix. The MSSI measures how a point varies relative to its surroundings as shown in Fig. 3. 
The deformations are encoded within the interval [-1, 1]. The value indicates the extent of the 
deformation along the principle curvatures. Typical shapes such as cup, rut, saddle, ridge, and 
cap can be measured along the interval. It thus captures both the geometry and the 
magnitude.

2.4 Selecting the LSUHI and the local hotspot

The selection criteria of LSUHI in this research are as follows. The temperature threshold set 
in each of the LCZs is a 2-standard-deviation from the zonal mean, determining whether 
LSUHI is excessively hot, and the MSSI>0 helps to select the raised LSUHIs. The 8-day 
MODIS image data represents the daily average monthly LST in 2012. LSUHIs can be 
selected by the criteria from every latent LST pattern. While four sets of LST images are 
acquired each day, there is a total of 48 distribution diagrams of LSUHIs during the whole 
year. The local hotspots are detected, whose frequency is the highest among LSUHIs in each 
LCZ throughout the year.

2.5 The LST-responsive land surface indicators

It is necessary to examine the relationship between LST and land surface indicators in each 
zone for mitigating the hotspots. The examination may concretely support the existence of 
the indicator–LST interactions and gives information about how the relationship varies 
through space. It also indicates the potential LST change by modifying a specific indicator at 
the percentage level. The examination provides two modules. The temperature responses of 
SVF, BD, BVD, BH, albedo, VI, and WI are first considered. Then, the temperature response 
of ISF is considered independently from the rest of the indicators to avoid collinearity [9]. 
PSF is left out also for its collinearity with ISF. This study applies Ordinary Least Squares 
(OLS) to inspect the interactions. It is in the form of:

 TLST = Xβ + e, (3)

Figure 3: The surface morphology in the range of Shape Index.
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where TLST is the LST as the response or dependent variable, X is the vector of multiple 
explanatory or independent variables, β is the regression coefficient indicating the relation-
ship between the TLST and X, and e is the intrinsic residual.

3 RESULTS

3.1 The classification of climate zones

By applying the K-means clustering for sufficient repetitions, a 7-category classification is 
found to be best suited for the study area, which means that the classification is neither com-
plicated nor simple. Figure 4 is an illustration of the classification. The shape of the climate 
zones outlines the distribution of a built environment meaning that artificial manipulation of 
land surface imposes significant impacts on climate. The details of the land surface indicator 
specifications are listed in Table 1. All indicators are normalized to the percentage level. The 
means of ISF, BD, and BVD increase along LCZ 1 through 7 implying that the artificial 

Figure 4: An illustration of the classification.

Table 1: The mean of the land surface indicator specifications in each of the LCZs (%).

LCZ SVF BD BVD BH PSF Albedo VI ISF WI

1 Water Bodies 99.52 2.28 1.60 4.03 81.21 17.48 4.57 6.51 58.16 

2 Vegetation 99.71 3.43 1.92 5.60 71.68 22.64 38.26 10.07 21.95 
3  (Vegetation and 

rural areas)
99.80 2.50 1.20 5.88 78.55 24.75 38.14 8.99 11.42 

4 (Rural Areas) 99.17 7.99 3.57 5.61 66.89 22.69 28.75 16.94 22.50 
5 (Built-up Areas) 94.83 15.36 14.58 12.21 71.17 23.35 25.20 25.31 15.95 
6 (Downtown) 83.92 29.21 42.91 18.78 52.59 20.29 17.17 43.61 20.35 
7 (Industrial District) 99.14 18.70 7.59 6.26 51.15 20.66 18.74 39.98 22.59 
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modification of natural environment intensifies. The increase of BH is pre-eminent in LCZ 5 
and 6 as high-rise residential communities and office buildings are clustered in downtown 
within these LCZs. The traditional low-rise and dense residential communities also enhance 
BD and BVD in LCZ 6. These dense buildings and apartments also substantially block visi-
ble sky and make LCZ 6 the only zone with SVF below 90%. Those indicators such as VI, 
PSF, and WI depicting the abundance of natural land surface decrease from LCZ 1 to 7 only 
except for the deficiency of VI in water bodies of LCZ 1. Albedo is roughly uniform along all 
LCZs with values around 23%. The traditional deteriorating communities and factory build-
ings with dark roofs lead to lower albedo in LCZ 6 and 7. The albedo values are 20.34% and 
20.60%, respectively.

For the convenience of cross-sectional comparison among LCZs, the mean values in 
Table 1 are plotted column-wise (Fig. 5). Same indicators in each of the seven LCZs are 
compared based on the overall mean of the study area. BD, BVD, PSF, ISF, and VI exhibit 
more prominent opposite deviations from the overall mean for rural and built-up areas.

3.2 The situation of LSUHI around one year

Figure 6a gives the frequencies of being LSUHI at each pixel location for all of the 48 time 
points. The LSUHIs with high frequency are distributed across the whole study area, espe-
cially in the southwest. These areas with serious thermal environment problems are called 
Wuhan Economic & Technological Development Zone in the southwest, Jinyin Lake 
Industrial Zone in the northwest, and WISCO Industrial Zone in the northeast. Then, the 
central area is mainly alongside the Yangtze River and lies at the north of the Ink Lake. To the 
southwest, the LSUHIs in a developed industrial zone are more apparent thanks to the 

Figure 5: Comparison of LCZs in terms of indicators.
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development of low intensity. It can be found that the LSUHIs with high frequency are mainly 
industrial zones around the city and urban center with dense population. Eight hotspots are 
selected with the highest frequency as the LSUHI in LCZs.

3.3 The land surface–LST interactions

Table 2 shows the impacts of the land surface indicators on LST in each LCZ at the pixel 
level in this research, which are all statistically significant (p>0.01). Take the ISF–LST rela-
tionship for instance, the regression coefficient β varies across zones in different places and 
scales. While a previous study has found that the coefficient is around 0.21°C in the whole 
study area [10], the table shows that the zonal coefficient fluctuates around this value. Higher 

Figure 6: (a) The frequency distribution of LSUHI and (b) the selected hotspots in each LCZ 
(5-19: LCZ-LSUHI frequency), and the red hotspot is selected as the example in 
this case study.
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values are found in zone 1 and 2. It means that LST is more sensitive to ISF change in these 
well-vegetated LCZs with lower ISF. For instance, increasing 1% of ISF in LCZ 1 may 
cause LST to rise to about 0.39°C within a pixel. The coefficient β tends to be smaller in 
LCZ 3 to 7, which means that the change of the ISF in built-up areas imposes less impact on 
LST. In contrast, ISF increasingly captures information of LST variations toward more 
intensive built-up LCZs according to the R2. Specifically, the R2 rises from 0.33 to 0.78 
through LCZ 2 to 7. It means that although LST is less sensitive to the change of ISF, such 
seemingly weak interactions may dominate the LST patterns as built-up areas are mostly 
impervious.

The multi-variable OLS regression suggests that SVF, albedo, VI, and WI are negatively 
correlated to LST while BD, BVD, and BH possess less clear relationships to LST. Espe-
cially for those more intensively built LCZs, BD, BVD, and BH can be negatively correlated 
to the LST which seems to be counterintuitive. A previous study has shown that this is because 
urban surface can be well shaded by high and dense building clusters and thus with lower 
surface temperature [28]. Although SVF maintains to be negatively correlated to LST in LCZ 
5, 6, and 7, its impact tends to be minimal and below -0.01. Among all the indicators involved 
in the multi-variable regression, albedo and VI possess the highest regression coefficients 
with LST. The R2 is relatively low in LCZ 2 and 3 for both the multi-variable and single-
variable regressions. Such low R2 reflects the limitation of using several built environment 
indicators in the interpretation of the LST variation in rural areas.

Table 2: The interactions between the land surface indicators and LST in each LCZ.

Multi-variable 
OLS Regression 
Parameters Indicators LCZ 1 LCZ 2 LCZ 3 LCZ 4 LCZ 5 LCZ 6 LCZ 7

β SVF -0.040 -0.032 -0.037 -0.015 -0.004 -0.001 -0.005 

BD 0.025 0.039 0.082 0.067 0.061 -0.064 0.148 
BVD 0.013 0.003 0.014 0.067 -0.023 -0.027 0.227 
BH 0.064 0.017 0.002 0.036 0.001 -0.006 0.204 
Albedo -0.325 -0.014 -0.019 -0.026 -0.107 -0.247 -0.226 
VI -0.062 -0.082 -0.109 -0.093 -0.142 -0.097 -0.196 
WI -0.116 -0.076 -0.110 -0.079 -0.033 -0.024 -0.023 

R2 0.761 0.566 0.494 0.708 0.667 0.778 0.583 
p ** ** ** ** ** ** **

Single-variable 
OLS Regression 
Parameters Indicators LCZ 1 LCZ 2 LCZ 3 LCZ 4 LCZ 5 LCZ 6 LCZ 7

β ISF 0.390 0.440 0.227 0.185 0.188 0.190 0.192 

R2 0.577 0.326 0.381 0.687 0.704 0.752 0.780 
p ** ** ** ** ** ** **

** indicates p>0.01 and thus the relationship is statistically significant with a confidence 
level of 99%
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3.4 The strategy to mitigate the hotspots

The hotspot as a study case is located in the northeast of the city in LCZ 5 with a frequency 
of 19 as being LSUHI. The hotspot is near the Yanxi Lake and lies at the southeast of the 
WISCO Industrial District. The overall mean of the study area is the benchmark. The largest 
discrepancy between the hotspot and LCZ is found in BD with 54.05%. The indicator speci-
fications at this hotspot are mostly less desirable than the level of LCZ 5, while this LCZ is a 
less desirable zone in the study area (Fig. 7a). The counterintuitive negative relationship 
between LST and BVD makes the strategy relatively subtle. The buildings are dense enough 
to shade the land surface as mentioned in Section 3.3. Thus, modification of building geom-
etries may be less promising. Indicators such as PSF, albedo, VI, ISF, and WI are all clearly 
indicated in Fig. 5. These indicator values should be first modified to the zonal level and not 
the average level of the study area based on priority. Considering the relationships between 
the land surface indicators and LST, increasing 1% of albedo may reduce 0.11°C of LST at 

Table 3: The indicator values of hotspot and mean of indicator for LCZ 5.

SVF BD BVD BH PSF Albedo VI ISF WI

mean of the study 
area

97.56 8.57 7.43 7.72 61.07 21.89 27.61 16.70 26.53

hotspot 99.98 69.41 17.63 4.24 70.71 22.45 17.41 29.23 10.60

LCZ 5 94.83 15.36 14.58 12.21 71.17 23.35 25.20 25.31 15.95
Hotspot-LCZ 
Discrepancy

5.15 54.05 3.05 -7.97 -0.46 -0.90 -7.79 3.92 -5.35

Surface–Temperature 
Relationship

-0.004 0.061 -0.023 0.001 - -0.107 -0.142 0.188 -0.033

Potential 
Optimization(°C)

- - - - - 0.10 1.11 0.74 -

Figure 7:  The land surface indicator specifications of hotspot and LCZ 5. (a) The indicator 
discrepancy between the hotspot and the LCZ benchmarked against the overall 
mean of the study area. (b) The QuickBird aerial image of the hotspot with its eight 
neighboring pixels on May 20th, 2012.



1322 Y. Yue, et al., Int. J. Sus. Dev. Plann. Vol. 12, No. 8 (2017)

the pixel level. It means that if albedo at hotspot increases by 0.9% to reach the corresponding 
zonal level, LST can potentially be 0.1°C lesser. Similarly, modifying VI to the zonal level 
can reduce 1.11 of LST in a pixel. Approximating ISF at the hotspot to the zonal level leads 
to a reduction of 0.74°C. The details are shown in Table 3. In a word, the indicator values of 
hotspot are adjusted to an approximate mean of the indicator for LCZ 5 to relieve LSUHI.

As this study focuses on the concept and framework, further examples are not explored. 
The mitigation strategies for other hotspots can be formulated in the same way as shown 
above.

4 DISCUSSION

4.1 The completeness and dynamic of indicators

The completeness of indicators means to characterize the climatic or meteorological property 
of the surface factor with enough details. Besides thermal and airflow pattern, others such as 
humidity, moisture, and pollution are also expected to be captured by the indicators. Only 
then can the indicators be considered to be complete.

The hotspot is selected from a one-year cycle without considering the diurnal or seasonal 
variation of land surface specification. The dynamic difference of these indicators would 
affect the distribution of LSUHI. More specific improvement strategies and suggestions 
would be proposed, if the distribution of the hotspots is further explored with land use and 
diurnal variation of indicators being taken into account.

4.2 The priority of planning and implementation

This research only adjusted the land surface parameters, whereas specific implementation 
approaches are different when carrying out the adjustment. The complexity and cost of each 
strategy is different in terms of planning and implementation. For example, the cost of reduc-
ing building density is normally higher than that of increasing vegetation cover. Meanwhile, 
the complexities in mitigation strategies also vary because of land use variance. The vegeta-
tion cover of public land is usually easier to adjust than that of residential land. The hotspot 
with high population density should be taken into consideration at day one, especially in 
urban centers. The high-frequency LSUHIs in city suburbs are mostly industrial zones, 
regarded as a secondary consideration due to low population density. It is therefore reasona-
ble to say that the priority of planning strategy should be considered in terms of land use, 
population density, complexity of adjusting specifications, and the correlation between the 
indicators and LST.

5 CONCLUSIONS
A framework of mitigating excessive heat in urban areas is proposed. The mitigation is at a 
local scale and helps to facilitate planning and design strategy selection with detailed guide-
lines. The mitigation is operated within zones and conforms to planning and design 
conventions. It avoids radical modifications of land surface configuration and enhances fea-
sibility and practicability. The mitigation thus attenuates in a hierarchical and incremental 
manner. The hierarchy manifests by priority based on two aspects: (1) problem identification, 
and (2) strategy recommendation. The incrementality is reflected by zonal level mitigation 
that ensures more achievable goals.
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