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ABSTRACT
Ground-level ozone is a secondary air pollutant and is photochemically produced by solar radiation from the 
reaction of volatile organic compounds (VOCs) and nitrogen oxides (NOx). Ground-level ozone is considered 
a harmful pollutant due to its adverse impact on human health, agricultural crops and materials. The concern-
ing factor is that in spite of decreasing trends in some other air pollutants (e.g. NOx), ozone concentrations 
are still increasing. This paper describes the temporal variations of ozone at four air quality monitoring sites 
(Harwell, Leeds, Marylebone and Strath Vaich) in the United Kingdom for the year of 2008. The association of 
ozone with some traffi c-related air pollutants has been explored applying a quantile regression model (QRM). 
The traffi c-related air pollutants considered as predictors for this study are hydrocarbons (HC), nitric oxides 
(NO), nitrogen dioxides (NO2), carbon monoxides (CO) and particulate matter (PM2.5). QRM can handle the 
non-linearities in the relationship of ozone and its predictors and is applicable to non-normal air quality data 
distribution. The behaviour and interaction of ozone with its predictors vary at different regimes of ozone 
distributions, which remains hidden when applying an ordinary least square regression model. QRM explains 
signifi cantly more variations in ozone concentrations (global goodness of fi t R1 = 0.88) as compared to ordinary 
least square regression (coeffi cient of determination R2 = 0.32) and is therefore better suited for ozone data 
analysis and prediction.
Keywords: Air pollution, ground-level ozone, nitrogen oxides, ozone variations, quantile regression.

1 INTRODUCTION
Ozone is naturally found both in the upper (stratosphere) and lower atmosphere (troposphere). In the 
stratosphere, ozone absorbs ultraviolet (UV) radiation and protects us from the harmful effect of the 
UV radiation. At the top of the troposphere, ozone acts as a greenhouse gas and contributes to global 
warming. At the bottom of the troposphere, where we live and breathe ozone is a toxic air pollutant 
and is considered one of the most harmful air pollutants. At the ground level, ozone is adversely 
affecting human life, agricultural crops, biodiversity and materials [1]. The ozone molecule is an 
unstable and reactive oxidant and readily deposits onto most surfaces, including biological tissues, 
for example, lungs, eyes or plant membranes [2]. The human health impacts of ozone derive from its 
irritant properties and its induction of an infl ammatory response in the lungs, causing health prob-
lems and premature deaths [1]. According to a recent World Health Organisation [3] report, ozone is 
causing 21,000 premature deaths, 14,000 respiratory hospital admissions and 108 million person-
days (restricted activity days, medication use for respiratory problems, cough and lower respiratory 
symptoms) in 25 EU countries. For details regarding the effects of ozone on agricultural crops, 
plants and other materials see Ref. [4].

Ozone is not emitted directly by combustion processes; it is rather formed photochemically from 
the sunlight-initiated oxidation of volatile organic compounds (VOCs) in the presence of nitrogen 
oxides (NOx) in the atmosphere and is therefore considered as a secondary air pollutant. Ozone 
concentrations are not only dependent on meteorological variables (e.g. solar radiation, temperature, 
relative humidity, wind speed and wind direction) but also on other air pollutants. Figure 1 shows 
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how ozone is involved in chemical reactions with various species in the atmosphere including NOx, 
hydrocarbons (HC), carbon monoxides and hydroxyl radical (OH). In addition to local  photochemical 
ozone production, ozone rich air advection (regional ozone transportation) and stratospheric– 
tropospheric ozone exchange may contribute a signifi cant amount to the local observed ozone 
concentrations. Nitric oxide (NO) titration and dry deposition of ozone are considered as the main 
sinks for ground-level ozone.

The concerning factor about ozone is that although the concentrations of other pollutants, 
including NOx, sulphur dioxides (SO2) and VOCs, have been declining for the last 20 years or so, 
ozone does not seem to suggest a declining trend. Background ozone concentrations have rather 
increased since about 1990 in the United Kingdom [5]. The increasing trends in ozone concentra-
tions are most apparent at urban sites, but which to a less extent also infl uence the observations at 
the majority of rural locations [1]. The increasing trend in ozone concentrations can be attributed 
to long distance migration of ozone from across the North Atlantic [1] or to reduction in local-
scale removal of ozone by direct reaction with fresh NO [6], a trend that is now widely attributed 
to the ongoing improvement in vehicle NOx emission regulations and associated progressive pol-
icy practices.

Ozone data are not normally distributed [9] and its relationship is non-linear with its predictors 
(NO, NO2, CO, PM2.5) [10]. Classical (parametric) statistics explicitly assume normality and linearity 

Figure 1: Photochemical ozone formation, showing various sinks and sources of ozone. RO2 – organic 
peroxy radicals, OH – hydroxyl radicals, HO2 – hydroperoxy radicals, O3 – ozone, NO – 
nitric oxides, NO2 – nitrogen dioxides, O(3p) – ground state oxygen atom, O(1D) – higher 
energy oxygen atom, R – alkyl radicals (e.g. CH3), HC – hydrocarbons (e.g. CH4), H2O2 – 
hydrogen peroxides, ROOH – alcohols, H2O – water, CO – carbon monoxides, CO2 – carbon 
dioxides, HNO3 – nitric acids, UV – ultraviolet radiation, UV ~ 310 nm is required for 
ozone photolysis (this diagram is a combination and modifi cation of [7] and [8]).
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of the data; therefore, linear regression may not be applicable to ozone data analysis, otherwise it may 
result in biased estimation [11]. This paper studies the temporal variations of ozone and its associa-
tion with traffi c-related air pollutants. The study employs a quantile regression model (QRM) which 
can be applied to both normal and non-normal data distributions and is capable of addressing the 
non-linearities in the association of ozone and other air pollutants data.

2 METHODOLOGY
This study is based on mean hourly data of ozone (µg/m3), HC (µg/m3), NO (µg/m3), NO2 (µg/m3), 
PM2.5 (µg/m3) and CO (mg/m3). Ozone data from four air quality monitoring sites have been ana-
lysed to establish ozone temporal variations (daily, weekly and seasonal trends) at these sites. The 
four sites are Harwell (rural) in the southeast of England, Leeds (urban centre) in West Yorkshire, 
Marylebone (roadside) in London and Strath Vaich (remote) in Highlands of Scotland. The paper 
concentrates on Marylebone roadside monitoring site to study the relationship between ozone and 
some of the traffi c-related air pollutants using a QRM. These air quality monitoring sites are part of 
the UK Automatic Urban and Rural Network (AURN), which is the United Kingdom’s largest auto-
matic monitoring network; for details of theses monitoring sites, see Ref. [12].

AURN uses Ultraviolet Analyser and Chemiluminescent Analyser for ozone and NOx measure-
ments, respectively. CO concentrations are measured using Infrared Analyser; whereas PM2.5 
concentrations are monitored by Tapered Element Oscillating Microbalance (TEOM), Beta Attenu-
ation Monitor (BAM), Gravimetric Monitor or Filter Dynamics Measurement System (FDMS), 
which provides a continuous direct mass measurement of particulate matter [12]. These techniques 
represent the current state-of-the-art for automated monitoring networks and, with the exception of 
the automatic PM10 and PM2.5 analysers, are the reference methods of measurement defi ned in the 
relevant EU Directives. The automated systems for particles are subject to correction for routine 
monitoring. The standard EU reference method for particulate measurement refers to three devices 
which might be used: (a) Low Volume System: the LVS-PM-10 sampler; (b) High Volume System: 
the HVS PM-10 sampler and (c) Super-High Volume System: the WRAC-PM10 sampler (Wide 
Range Aerosol Classifi er) [13].

The mean hourly monitored data, after some initial screening process to exclude clearly faulty 
data, are uploaded as provisional data every hour. The data then go through a further two stages 
called data verifi cation and data ratifi cation before the data are marked as ‘Ratifi ed’ data. All the data 
from AURN have a standard Quality Assurance (QA) and Quality Control (QC); for details of these 
procedures, see Ref. [12].

2.1 Model description

This study applies QRM proposed by Baur et al. [14] for ozone and air quality data analysis and has 
certain advantages over other methods. QRM can be used for both parametric and non-parametric 
regression methods, as this model does not depend on the single measure of the central tendency 
(mean or median) of the data distribution only; instead, it examines the entire distribution of the data 
and hence is robust to departures of the data from normality and skewed tails. QRM allows the 
covariates to have different impacts at different points of the data distribution and is, therefore, capa-
ble of handling the non-linearities in the association of dependent and independent variables.

The linear regression model (LRM) focuses on modelling the conditional mean of a response 
variable (in our case ozone) without addressing its full distribution, whereas the QRM accommo-
dates analysis of the full distribution of the response variable. The QRM estimates the potential 
differential effect on various quantiles of the data distribution. Using ozone (O3) as dependent 
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 variable and HC, CO, NO, NO2 and PM2.5 as independent variables, LRM and QRM can be pre-
sented as below [11]:

 03 = β0 + β1ΗC + β2CO + β3NO + β4NO2 + β5PM2.5 + ε1 (1)

 03 = β0
(p) + β1

(p) ΗC+ β2
(p) CO + β3

(p) NO + β4
(p) NO2 + β5

(p) PM2.5 + ε1
(p) (2)

where p shows the pth quantile and 0 < p < 1, β0 (constant) the intercept, β1 to β5 the slopes (gra-
dients) of the independent variables and ε the error term. The error term in LRM is assumed to be 
independent of the value of the covariates (homoscedasticity). In contrast, QRMs allow for the vari-
ance of the error term to vary (heteroscedasticity) and make no assumptions about the variance 
structure. The constant b0 and the coeffi cients β1 to β5 are estimated for 99 different quantiles 
(p = 0.01,…, 0.99) using each time the entire dataset. The 0.5th quantile represent the median, half 
of the data occur above the median and half below the median.

R package for statistical computing version 2.1.3.1 [15] and two additional packages ‘openair’ 
[16] and ‘quantreg’ [17] were used to perform the statistical analysis presented in this paper.

3 RESULTS AND DISCUSSION
Ozone distributions at Leeds, Strath Vaich, Harwell and Marylebone have been depicted in Fig. 2, 
which shows that statistically ozone distribution is not normally distributed at any of these sites. The 
distribution is different at various sites and is right skewed; see Ref. [9] for more details of ozone 
distribution at various monitoring sites and in various months.

Ozone temporal variations at roadsides, urban centres, rural and remote locations in the United 
Kingdom are briefl y analysed in section 3.1; and the association of ozone with HC, NO, NO2, CO 
and PM2.5 has been analysed with the help of QRM in section 3.2.

3.1 Temporal variations of ozone

In this section, ozone data from four monitoring sites have been analysed to estimate ozone daily, 
weekly and seasonal cycles. The four monitoring sites have different characteristics; the aim here is 
to obtain a broad picture of ozone variations at roadsides, urban centres, rural and remote areas. 
Ozone concentrations seem to have been affected by both meteorological conditions and sources of 
fresh NO (as explained below). Figure 3 shows the time variations plot of ozone for 2008 at Leeds 
centre, Harwell, Marylebone, and Strath Vaich. Generally ozone concentrations are found to be 
higher at rural and remote sites (Harwell and Strath Vaich) and lower at urban and roadside monitor-
ing sites (Leeds and Marylebone). The lowest ozone concentrations are exhibited by Marylebone 
monitoring site which is located approximately 1 m from the edge of Marylebone road (A50). This 
road has six lanes and has a fl ow of 80,000 vehicles per day [12]. Most probably titration of ozone 
by fresh NO emitted by road transport keeps ozone concentrations low at this site.

Ozone concentrations at all sites follow a typical 24-h cycle, that is, lower during night and early 
morning hours and higher during day times (Fig. 3, bottom-left). The highest concentrations are 
achieved during the afternoon from 1200 to 1400 h, most probably caused by photochemical ozone 
formation as a result of higher amount of UV radiation during these hours. Harwell and Strath Vaich 
sites have slightly different daily cycles than Marylebone and Leeds. At Marylebone and Leeds in 
addition to night times low, there is a further reduction in ozone concentrations in the morning 
(about 06:00 am), which cannot be observed at the other two sites. This affect is most probably 
caused by the early morning traffi c which emits NO that quickly reacts with ozone and further 
reduces its concentrations.
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On a weekly basis, generally weekend and Monday exhibit higher, whereas Wednesday and 
Thursday show relatively lower ozone concentrations (Fig. 3, bottom-right panel). For instance, 
mean ozone concentrations (µg/m3) at Marylebone site were 20 and 12 and at Harwell site 47 and 55 
on Sunday (weekend) and Thursday (midweek), respectively. High level of ozone during weekend 
is a well-known phenomenon and is referred to as ‘ozone weekend effect’ (OWE)’ in the literature, 
for example, [18], and the references therein. Low levels of traffi c during weekend is considered to 
be the main cause of OWE, as low levels of fresh NO reduce local ozone removal. Compared to other 
weekdays, the higher level of ozone on Monday is probably due to the carry over effect of ozone 
from weekend. At Strath Vaich monitoring site, the difference in ozone concentrations during differ-
ent days is negligible, probably because the site is remote and is not affected much by road traffi c.

Ozone concentrations show a clear seasonal effect. Ozone concentrations are higher during 
March, April and May and lower during autumn and winter months at all four sites (Fig. 3, bottom-
middle). For instance, monthly mean ozone concentrations at Marylebone site were 35 and 7 and at 

Figure 2: Ozone distributions at Leeds (urban), Strath Vaich (remote), Harwell (rural) and Marylebone 
(roadside) monitoring site for the year of 2008.
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Leeds site were 79 and 17 for May and December, respectively. Cloudy and cold weather condi-
tions during winter months result in very low UV radiation in the United Kingdom, which reduce 
photochemical ozone formation. Ozone titration by NO and low tropospheric–stratospheric 
exchange of ozone caused by the stagnant atmospheric conditions further reduces ground-level 
ozone concentrations, which explain low level of ozone in the winter months. In spring when UV 
radiation increases, it increases photochemical ozone formation and hence ozone level increases in 
the atmosphere. The point which needs further attention is that UV radiation are generally higher 
in June, July and August but Fig. 3 shows that after May ozone levels decrease gradually and in 
August reach a level which is normally observed in winter months. The reason is that for photo-
chemical ozone formation in addition to UV radiation, the presence of VOCs is essential whose 
oxidation by OH in the presence of NOx leads to ozone formation. Data collected at Harwell and 
Marylebone monitoring sites show (Fig. 4) that HC accumulate in the atmosphere during winter 
months and reach the highest level in February. In March when the level of UV radiation increases, 
this consumes the HC through photochemical ozone formation and HC levels gradually decrease. 
In August in spite of relatively high level UV radiation, photochemical ozone formation is restricted 
by the limited availability of HC.

At Harwell and Marylebone about 30 HC are monitored (1,2,3-trimethylbenzene, 1,2,4-trimethylb-
enzene, 1,3,5-trimethylbenzene, 1,3-butadiene, 1-butene, 1-pentene, 2-methylpentane, 3-methylpentane, 
benzene, ethane, ethyl-benzene, ethene, ethyne, isoprene, propane, propene, toluene, cis-2-butene, 
cis-2-pentene, isobutane, isooctane, isopentane, mp-xylene, n-butane, n-heptane, n-hexane, n-octane, 
n-pentane, o-xylene, trans-2-butene, trans-2-pentene). Instead of analysing the data of all HC, their 
hourly concentrations are averaged to get one variable for each site. The HC levels at Marylebone are 

Figure 3: Time variations of ozone at four different sites in the United Kingdom, 2008.
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much higher than at Harwell; therefore, normalised levels are applied to make the comparison easy. 
‘Openair package’ simply divides the variable(s) by their mean values to calculate the normalised 
levels.

3.2 Output of quantile regression

The outputs of QRM have been depicted in Fig. 5, using ozone as a response variable and HC, NO, 
NO2, CO and PM2.5 as explanatory variables measured at Marylebone road, 2008. The Barrodale 
and Roberts (BR) algorithm method for computing the fi t has been adopted here. The ‘BR’ method 
has been described in details in Koenker and d’Orey [19] as an effi cient technique for large datasets 
(e.g. up to several thousand observations). In Fig. 5 alongside quantile regression, the outputs of 
ordinary least square regression have also been visualised. In ordinary least square regression, only 
one regression coeffi cient represents the entire distribution of the explanatory variable (indicated by 
solid line along with its 95% confi dent interval), whereas in quantile regression, generally, several 
coeffi cients are given depending on the number of quantiles chosen. In Fig. 5 quantile regression 
coeffi cients have been given for 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.99 quantiles (repre-
sented by dashed-dotted line with their 95% confi dent intervals). Quantile regression coeffi cients 
have been given at y axis and different quantile values (0.1 to 0.99) at x axis. In Fig. 5 the top left 
panel shows the intercepts of the model. The values of intercept (constant) are higher for higher 
quantiles and vice versa. For instance, the intercept value for 0.1 quantile is about 5, whereas it is 
about 75 for quantile 0.99.

The effect of HC on ozone concentrations have been presented in Fig. 5 (top-right). The effect of 
HC on ozone concentrations is signifi cant as confi dent intervals of the quantile regression coeffi -
cients do not overlap with the zero line. Quantile regression coeffi cients are negative, which shows 
that HC have negative association with ground-level ozone. In other words, an increase in ozone 
concentrations causes a decrease in HC concentrations. HC levels are generally higher in winter 
months (Fig. 4) when ozone concentrations are lower and their concentrations start decreasing in 

Figure 4: Monthly mean of HC in 2008 at Harwell and Marylebone.
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spring as photochemical ozone formation increases, which consumes HC. The strength of the rela-
tionship between ozone and HC increases gradually with the increase in ozone concentration and 
reaches the highest value at quantile 0.99, where the quantile regression coeffi cient value is ‘−2.02’. 
Spearman correlation between ozone and HC was also estimated and had a negative value, the high-
est correlation coeffi cient was estimated for the month of March (−0.80) and lowest for August 
(−0.34). Spearman correlation was applied because it can be used for both normal and non-normal 
distribution and is therefore best applicable to air quality and ozone data, which normally have non-
normal distribution (Fig. 2).

The effect of CO on ozone concentrations is shown in Fig. 5 (middle-left). CO has a negative 
impact on ozone concentrations and the effect is signifi cant at all quantiles. Like HC and NOx, 

Figure 5: The outputs of QRM showing the effect of HC, NO, NO2, CO and PM2.5 on hourly mean 
ozone concentrations at Marylebone road site, 2008. Quantile regression coeffi cients 
(dashed-dotted line) and ordinary least square regression coeffi cients (solid line) are 
presented with 95% confi dence interval. Various quantiles are shown on x axis, whereas 
their coeffi cients are shown on y axis.
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CO is considered as one of the precursors of ozone (as shown in Fig. 1) and therefore photo-
chemical ozone formation will consume CO, which explains the negative correlation. The 
quantile regression coeffi cients of CO have the same pattern as that of HC. The strength of coef-
fi cients increases from quantile 0.1 to 0.99 gradually and range from −0.53 to −10.00. The 
correlation coeffi cients are much higher for CO than HC, NO, NO2 and PM2.5, which may be due 
to the fact that CO is measured mg/m3, in contrast to the other pollutants which are expressed in 
µg/m3. The highest spearman correlation coeffi cient was shown by March (−0.81) and lowest for 
August (−0.37).

The effect of NO (Fig. 5, middle-right) on ozone concentration is negative and is signifi cant at all 
quantiles except at quantile 0.99, where the confi dent intervals overlap with zero. The strength of 
coeffi cients slightly increases from quantile 0.1 to 0.5 and then stays almost constant. The effect is 
not signifi cantly different from the mean effect at most of the quantiles. On the other hand, NO2 
(Fig. 5, bottom-left) has positive effect on ozone concentrations from quantile 0.1 to 0.6 and negative 
from quantile 0.7 to 0.99 of the ozone distribution.

Figure 5 (bottom-right) shows the effect of PM2.5 on ozone concentrations. Quantile regression 
coeffi cients are negative up to quantile 0.8 and positive at quantile 0.9 and 0.99. The effect is sig-
nifi cant at all quantiles. Highest correlation coeffi cient was estimated for the month of March (−0.78) 
and lowest for the month of August (−0.46) using spearman correlation analysis.

3.2.1 Goodness of fi t for quantile regression
Coeffi cient of determination or goodness of fi t (R2) is a measure used in statistical model analysis 
to assess how well a model explains and predicts future outcomes of the data. R2 is the ratio of the 
explained variation to the total variation and is a measure that allows us to determine how certain 
one can be in making predictions from a certain model. The goodness of fi t in ordinary least square 
is based on least squares criterion. R2 values range from 0 to 1. Larger value of R2 indicates a better 
model fi t. In quantile regression, the goodness of fi t is represented by R1 (τ) and its values, like R2, 
lies between 0 and 1 [20]. R2 measures a global goodness of fi t over the entire conditional distribu-
tion, whereas R1 (τ) measures the local performance of model for a given quantile. Koenker and 
Machado [21] suggest measuring R1 (τ) by comparing the sum of weighted distance for the model 
of interest with the sum in which only the intercept is used (for details, see Refs [20, 21]). R1 (τ) 
and R2 have different ways of calculating and have different natures, as the former is a local whereas 
the latter is a global measure of performance and therefore are not directly comparables. R1 (τ) and 
R2 that are estimated for 0.50 quantile (median of the data) and mean ozone, respectively, are dif-
ferent even if the models estimates of the ozone concentrations are similar. R1 (τ) values for 
different quantiles have been shown in Fig. 6, which are relatively weaker as compared to global 
goodness of fi t for the ordinary least square regression. The coeffi cient of determination for the 
linear model was 0.32.

To make the performance of QRM comparable with least square regression model, a global good-
ness of fi t (denoted by R1) can be estimated for QRM. To estimate R1 for QRM, this study adopts the 
amalgamated QRM (AQRM) suggested by Baur et al. [14]. The fi rst step in estimation of R1 is to 
run QRM and determine quantile regression coeffi cients for 10 quantiles (0.1, 0. 2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9, 0.99) that were used in section 3.2, using ozone as dependent variable and NO, NO2, 
HC, CO and PM2.5 as independent variables for the whole dataset. The test dataset (April 2008) was 
divided into 10 equal subsets according to the above quantile values of ozone data. Using quantile 
regression coeffi cients of each quantile, ozone was predicted for each subset and combined into one 
dataset ordering from 0.1 to 0.99. Finally predicted (estimated by the model) and observed (April 
2008) ozone were compared for the test data (Fig. 7).
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Figure 7 depicts predicted ozone versus observed ozone mixing ratios at Marylebone roadside 
monitoring site for April 2008. The scatter plot of observed ozone versus predicted ozone by QRM 
is shown in the left, whereas the scatter plot of observed ozone versus predicted ozone by ordinary 
least square (OLS) model is shown in the right–top panel of Fig. 7. Observed and predicted ozone 
depicted by lines rather than points to simplify the comparison are shown in Fig. 7 (bottom panel). 
Predicted ozone by QRM closely follows the observed ozone, particularly at extreme values where 
OLS fails to perform. QRM explains more of the ozone variations showing R1-value of 0.88 in com-
parison to OLS which has R2-value of 0.32. This indicates that QRM explain the ozone variation 
(88%) signifi cantly better than OLS (32%). As shown in Fig. 2, the ozone concentrations at Maryle-
bone roadside monitoring site have skewed distributions with the long right tails. As a result, OLS 
model underpredicts ozone concentrations in the right tail of the distribution.

4 CONCLUSION
This paper describes time variations of ground-level ozone concentrations (hourly mean data in µg/m3) 
at four air quality monitoring sites (Harwell, Leeds, Marylebone and Strath Vaich) for the year 2008. 
Daily, weekly and seasonal cycles of ozone concentrations have been visualized with the help of 
time variation plots. The temporal variations have been explained with the help of traffi c-related air 
pollutants (HC, NO, NO2, CO and PM2.5) data and meteorology. The paper focused on data from 
Marylebone site to investigate the relationship of ozone with traffi c related air pollutants using a 
QRM. QRM is applicable to non-normally distributed air quality data and can effectively address 
the non-linearities in the association of ozone and its predictors. QRM studies the entire distribu-
tions of the data and unlike ordinary least square regression does not rely on the central value (mean, 
median) only. The behaviour and interaction of the independent variables with ozone change at dif-
ferent regimes of ozone concentrations, a characteristic that is normally obscured in the traditional 

Figure 6: Local goodness of fi t R1 (τ) as a function of the ozone quantiles for the QRM at Marylebone 
road, 2008.
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regression models. Comparing the performance of QRM and OLS, it is shown that QRM performs 
better (global goodness-of-fi t R1 = 0.88) than OLS (coeffi cient of determination R2 = 0.32). Better 
correlation was observed between recorded and predicted ozone by QRM, particularly at extreme 
values as OLS underpredicts ozone concentrations in right skewed tail of ozone distribution. This 
study was conducted using data recorded during one year at four monitoring sites. Further work is 
required for spatial and temporal comparisons of ozone concentration and its new trends based on 
long-term data from more sites.

Figure 7: Comparison of predicted versus observed ozone concentration at Marylebone roadside site 
using AQRM R1 = 0.88 and OLS model R2 = 0.32 for April 2008.
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