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ABSTRACT
The effi ciency of emergency service systems is measured in terms of their ability to deploy units and personnel 
in a timely and effective manner upon an event’s occurrence. When dealing with public sector institutions, this 
refl ects the signifi cance for state or local offi cials to determine the optimal locations for emergency stations 
and vehicles. The typical methodology to deal with such a task is through the application of the appropriate 
 location-allocation model. In such a case, however, the spatial distribution of demand although stochastic 
in nature and layout, when aggregated at the appropriate level, appears to be spatially structured or semi- 
structured. Aiming to exploit the above incentive, a different approach will be examined in this paper. The 
spatial tracing and location analysis of emergency incidents is achieved through the utilisation of an Artifi -
cial Neural Network (ANN). More specifi cally, the ANN provides the basis for a spatiotemporal clustering 
of demand, defi nition of the relevant centres, formulation of possible future states of the system and fi nally, 
defi nition of locational strategies for the improvement of the provided services. The proposed methodological 
approach is applied to Athens Metropolitan Area and the adopted dataset constitutes of the incidents that were 
reported and confronted by the city’s Fire Department during the year 2008.
Keywords: Emergency planning, fuzzy logic, neural networks, spatiotemporal location analysis.

1 INTRODUCTION
The main objective during the confrontation of locational planning problems is the location of facil-
ities or service centres and the simultaneous spatial allocation of demand to them. The problems in 
question are deterministic, when the critical problem parameters, namely, the spatial distribution of 
demand, the distances from demand points to the candidate centres and the capacity of facilities, are 
predefi ned and constant. In the case that, the values of any of these parameters are allowed to change 
over time, the corresponding phenomena are considered stochastic. Such spatial problems can be 
approached via location-allocation models and are solved by examination of a set of alternative loca-
tion patterns [1]. The aim of these models is to minimise objective functions that usually express 
some form of cost.

Demand is depicted spatially as a point pattern whose analysis in the case of stochastic problem 
settings is of decisive importance for its appropriate allocation to supply sites or service centres. The 
points constituting such a pattern may or may not share equal weights, characterised in this respect 
as constant or variable over time and their spatial distribution can be either random or following a 
clustered or regular structure.

For the formulation of robust solutions to location-allocation models, three alternative meth-
ods can be utilised: exact analytical numerical solutions or programming techniques and 
heuristic algorithms and meta-heuristic algorithms [2]. Research during the last decades has 
revealed many weaknesses in traditional methods of solving location-allocation problems, par-
ticularly with respect to the specifi cation of the algorithm’s initial solution and the selection of 
the appropriate objective function [3]. The main advantage of programming techniques is that 
they always lead to an optimal solution [4]. The basic disadvantage of these algorithms still 
remains the fact that they cannot ‘guarantee’ that they will converge to a global and not a local 
optimal solution.
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During the fi rst decades of the 1990s, meta-heuristics, a new type of algorithms was introduced, 
based mainly on techniques of artifi cial intelligence. According to Haykin [5], artifi cial intelligence 
is: ‘a sector of computer science, which deals with the study and creation of information systems 
which contain some type of intelligence’. Artifi cial intelligence is thus composed of four separate 
modelling technologies: Expert Systems, Fuzzy Logic, Neural Networks and Genetic Algorithms. 
Applications of such models are mentioned by Guerrero et al. [6], for location allocation models in 
continuous space and by Wilsons et al. [7], who used expert systems to determine regions of high 
criminality. In 1996, Houck et al. [8], developed a genetic algorithm for the Weber problem, while 
in 1997 Gen et al. [9], applied a similar approach to deal with the Capacited Location Problem. 
Finally, Zhou, Gen et al. [10], in 2002 proposed a genetic algorithm for the balanced allocation of 
customers to multiple distribution centres in a supply chain network. These papers reveal the pro-
gressive adaptation of artifi cial intelligence methods and techniques to the successive stages of 
location planning and modelling process. Furthermore, the integration of GIS with artifi cial intelli-
gence leads to the development of powerful tools for decision-making with high levels of effi ciency 
[11–15]. With this in mind, the present paper develops neural networks and fuzzy logic for predict-
ing spatial demand patterns and locating supply centres in locational planning problems.

In this paper, we analyse emergency incidents that diachronically occur during successive time 
periods, and through the identifi cation of their spatiotemporal footprint, we predict their pattern’s 
future evolution. Our goal is to take action on the planning, management and prevention levels. The 
proposed analytical methodology is based on both GIS functionality and artifi cial intelligence tech-
niques, such as neural networks and fuzzy logic.

More specifi cally, in the proposed approach, each location problem is dealt with at three distinct 
stages. First, the spatial point pattern of demand is analysed over time using the Nearest Neighbour 
Analysis method. Second, the approach provides the ability to predict, by means of neural networks, 
how the pattern of demand will develop. Finally, it locates supplying centres and allocates demand 
to them by the implementation of fuzzy logic.

The application section of our work, deals with the location of the Fire Department’s vehicles (fi re 
engines) in the Metropolitan Area of Athens, Greece. Demand prediction, based on diachronic data, 
allows fi re engines to be sited in locations which will minimise distances from the set of expected 
incidents. Consequently, given that in locational planning the locational choices made are generally 
judged by the ‘quality’ of the decision-making process, which generated those choices [16], improved 
problem analysis will lead to better locational choices and thus better locational patterns.

Diachronic data are analysed and processed by the neural network, which interprets the spati-
otemporal pattern of demand and approximates the predicted Cartesian coordinates of future events. 
In the following stage of the process, the fi re engines are optimally located and the allocation of 
demand to them is accomplished through the utilisation of fuzzy logic and more specifi cally the 
Fuzzy C-means algorithm. Finally, in an attempt to assess the effectiveness of the proposed method-
ology, the results, in terms of predicted event locations are compared with the analogous pragmatic 
data of supply and demand.

2 LOCATIONAL PLANNING PROBLEMS
In general, locational planning problems deal with the spatial organisation of services, which respec-
tively require the location of centres and the allocation of the demand to them, according to specifi c 
constraints. In principle, we can differentiate the constraints into two major categories: The fi rst one, 
which is termed distance-oriented, deals with the maximum time-distance that the population has to 
travel to get to its centre. The second, which is termed demand-oriented, refers to the minimum and 
maximum number of demand, which justifi es the existence of a certain service centre. In this paper, 
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of interest is the second constraint category, which leads to one of the most critical issues in any 
locational planning strategy or policy action, namely, the assessment of centre utilisation.

More specifi cally, in most empirical locational planning applications, the degree to which invest-
ments for the location of service centres will be fi nally justifi ed by their future utilisation has yet to 
be satisfactorily answered. Furthermore, location analysts are greatly interested in the avoidance of 
mistakes stemming from the absence or inadequate estimation of the critical planning parameters, 
such as the size and the composition of the population to be served and the way they respond to 
changing conditions in the problem environment [17].

2.1 Objectives of locational problems

The objective of a location allocation model is to fi nd the optimal location of P centres and to allo-
cate demand W in the nearest centres. Thus, objectives are determined that depend on the location 
of centres and then algorithms are defi ned for fi nding the optimal or near optimal solution [2].

Location models fall into two types, deterministic and stochastic. In the deterministic type, data 
are predetermined and do not depend on time. However, most location problems are dynamic [18]. 
The dynamic nature of problems is dealt with stochastic models in which multiple time periods are 
contained [19]. These periods facilitate the detection of differences in the average value of demand, 
the recognition of differences among spatial point patterns and the estimation of future levels of 
demand [1]. This periodical variability in demand suggests that the optimal solution is not to be 
found having fi xed centres. A classic example of a stochastic problem is the location of ambulances 
in a city. Future calls for help from ambulances are not known in advance. However, their prediction 
is of decisive importance so that demand is dealt with in the best possible way [20].

A basic condition for the prediction constitutes the analysis of spatial point pattern of demand 
through which it is possible to comprehend the structure and to determine the tendencies of a spatial 
phenomenon.

2.2 Spatial point pattern analysis

During the fi rst decades of the 20th century, the analysis of a distribution of points to decide to 
which morphological type of spatial pattern belongs was considered a complicated and challenging 
problem.

However, from 1960s onwards, new methods and techniques were introduced as adequate means 
of testing and interpreting real-world phenomena summarising the general properties of patterns. 
First, Dacey [21] and later Rogers [22] dealt with the adoption of mathematical models capable of 
describing and mathematically expressing spatial distributions through a process-to-pattern 
approach.

Each spatial pattern in certain space and time is considered the result of an earlier process evolv-
ing in broader space and time limits. The basic spatial processes that are expressed through the 
corresponding point patterns are random, attractive and competitive. These lead, respectively, to 
random, clustered and dispersed point patterns. Nowadays, there are many available descriptive 
statistics for pattern analysis. The two most widely applied point pattern analysis techniques are: 
quadrat analysis and nearest neighbour analysis [23].

In this section, the nearest neighbour method will be discussed and illustrated. According to it, 
distances from every point to its nearest neighbour are calculated, summarised and their mean value 
is calculated. Then, it is compared to the corresponding mean expected distance of a spatial pattern 
of the same size, which would result from a random process (Poisson distribution).
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More analytically, as Rogers [22] showed in 1969, if a circle of diameter dα is considered, then 
the probability that a point exists in distance dα (expected distance) follows normal distribution with 
a mean value given by the eqn (1):

 
1 / ,2d n Aa =

 (1)

where n denotes the number of points in the distribution and A represents the area under study. The 
observed mean value of distances from every point to each nearest neighbour is calculated according 
to the eqn (2):
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where di denotes the distance from every point i to its nearest neighbour.
This is a sampling value of a theoretical normal distribution. This distribution is the sampling 

distribution of all likely dp. Statistical tables of normal distribution allow us to check how much the 
observed value dp coincides with the theoretical da. The divergences from random spatial process are 
determined through the indicator R = dp/da [24]. By means of this indicator, a scale is created. This 
scale starts with a clustered pattern and progresses through a random pattern to end in a uniform 
spatial pattern. Thus, if R < 1, then the pattern has a tendency to cluster, while, if R > 1, then it has 
the tendency to dispersion. Finally, if R = 1, the pattern is random.

Furthermore, σdα, the standard deviation of da is needed, which is given by eqn (3):
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Finally, Z value is calculated, from eqn (4), and is compared to the value that results from statisti-
cal tables of normal distribution for the desired level of confi dence.
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The comparison aims at checking the null hypothesis H0 and the hypothesis H1. The probability 
that the criterion value appears is calculated. If the probability is smaller than the level of confi dence, 
then the null hypothesis H0 is rejected and H1 is accepted. If probability is greater than the level of 
confi dence, then the null hypothesis H0 can neither be rejected nor accepted [25].

2.3 Artifi cial intelligence

Methods and techniques that incorporate and simulate basic characteristics of human thought to 
solve practical problems are part of the science of artifi cial intelligence. Expert systems, neural net-
works, genetic algorithms and fuzzy logic are methods and techniques of artifi cial intelligence and 
imitate the way that a human learns, creates symbols, recognises and represents elements of reality. 
In the present paper, the techniques of neural networks and fuzzy logic are embedded in the pro-
posed methodology.

2.3.1 Neural networks
Neural networks are systems that incorporate and simulate basic characteristics of human thought to 
solve practical problems. The goal of a neural network is to recognise the mathematical patterns 
among data sets [26, 27]. According to Haykin [4], a neural net is a parallel processor system that 
stores and analyses knowledge like a human brain. Another defi nition is that a neural net is a simula-
tion of a human brain that learns to recognise mathematical patterns among the data.
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The process of setting up the architecture of a neural network is complicated. For each network, a 
set of parameters, such as the number of hidden layers, the number of neurons per layer, the learning 
rate, the epochs of iteration and the transfer functions needs to be regulated. The appropriate setting 
of these parameters is of crucial importance, for the fi nal precision and acceptance of network 
depends on them.

2.3.2 Fuzzy logic
Fuzzy logic theory was developed to handle problems that do not have clear boundaries or cases in 
which ambiguity is inherent. It can be regarded as a generalisation of the classic theory of sets and 
as a generalisation of dual logic. Classic mathematical dual logic has a tendency to model the real 
world so that everything fi ts in it. For Aristotelian logic, that is classic: everything is characterised 
with a ‘yes’ or ‘no’. Anything that cannot be characterised as such is abandoned or transformed to fi t 
into this binary selection. In the real world, on the other hand, there are many ambiguous cases; dual 
logic cannot handle these problems. Lofti Zadeh [28] introduced a new logic, the fuzzy logic, that 
can handle both binary and ambiguous cases.

According to Zadeh, fuzzy logic is the process of making calculations with words. The ability to 
develop models built on linguistic terms and based on a common feeling or empirical rules is the 
core of fuzzy logic theory. Fuzzy logic is part of artifi cial intelligence, which is a set of methods for 
analysing and representing knowledge similar to the human brain. Fuzzy logic is ideal to achieve this 
objective, as it provides a method to translate the natural language based on expressions of knowl-
edge and common sense into a precise mathematic language. It is a technology that gives computers 
the possibility of thinking and of making decisions that simulate humans. [29, 30].

One of the most effi cient and well-known algorithms in fuzzy classifi cation is Fuzzy C-means. It 
analyses input elements, seeks relations among them and fi nally classifi es them. Each class has a 
cluster centre, which portrays the value of a typical object of that class. The remaining objects are 
not classifi ed in only one class. Instead, a membership value is calculated expressing the degree that 
each object belongs to each class.

3 METHODOLOGICAL FRAMEWORK
The main aim of the proposed methodology is twofold. First, the approximation of the geographical 
coordinates of incidents that will hypothetically occur in time t + 1, in the study region, when dia-
chronic data are available until time t (Graph 1). Second, the optimal allocation of the predicted 
demand points to a specifi c number of service centres, which in a locational planning perspective 
should coincide with the optimal service arrangement for problem at hand.

t1 t2 t+1

t3, …,t

Graph 1: Spatiotemporal demand distribution and matching.
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Diachronic data for T time periods (T = 1, …,t) concerning demand (WT) which must be served 
by P mobile units (P = 1, …,n) are collected initially. The demand is expressed by a list of Cartesian 
coordinates indicating the geographical location ( , )T T

i iX Y  of each incident. The number of incidents 
Wt+1, for time t + 1 as well as their geographic coordinates 1 1( , )t t

i iX Y+ +

 are then determined.
For the defi nition of their estimated geographical coordinates, spatiotemporal series of events are 

created fi ctitiously expressing incident movement over time. The prediction is, thus, based on the 
hypothesis that incidents that occur in any period are connected with incidents of the next with a 
one-to-one relation. Although normally each time T does not contain the same number of incidents 
WT, with every other, the entire set of incidents should be correlated throughout time T = 1 to time 
T = t.

This correspondence is based on the distance T
ioD  of each incident i (Xi, Yi) from reference point 

O (X0, Y0) for two successive time periods or time interval T, and is expressed according to eqn (5).

 
2 2( ) ( ) .T

io i o i oD X X Y Y= − + −
 

(5)

Points are then shortened in ascending order by distance and matched so that the fi rst point in 
period t1 corresponds to the fi rst point of the next period, t2 and so on. The same process is followed 
for the remaining points, generating in this respect the neural network’s input matrix. Due to the dif-
ferent number of events WT for each time T, there is a possible issue concerning the likelihood of 
fi lling the input matrix partially and with respect to prediction potential incompletely. To deal with 
this problem, two different approaches can be applied, depending on the relation of incidents of 
previous and subsequent time period:

(a) If incidents Wt are more than predicted Wt+1, then they are clustered using fuzzy logic. The 
number of clusters equals Wt+1. Thus, the number of incidents is reduced, while maintaining their 
spatial correlation.

(b) If incidents Wt are less than predicted Wt+1, then spatial interpolation is applied so that the 
number of incidents is incremented to the predicted value, as this is expressed in eqns (6) and (7).
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In the case where the matrix remains partially completed, it is divided into the same number of 
parts as the number of consecutive parts of the table. To proceed according to the proposed approach 
and predict incident locations, a different neural network is created for each new matrix.

Finally, the predicted points representing the approximate location of events are clustered through 
the utilisation of the Fuzzy C-means algorithm with the centres of each cluster playing the role of a 
fi re engine’s location. Under these circumstances and in terms of the locational planning aspect of 
the problem, cluster points represent demand nodes, while cluster centres correspond to the optimal 
facility locations.

4 CASE STUDY: EMERGENCY MANAGEMENT IN ATHENS, GREECE
In this section, we apply the derived model for the location of fi ve fi re confronting vehicles in the 
Metropolitan Area of Athens, Greece. Aiming to support the decision-making process according to 
real data in terms of both emergency management and response, we use records of incidents that 
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were recorded and operationally served by the Athens Fire Department during the fi rst 11 months of 
2008. The dataset provided by the Athens Fire Department included information on the type, the 
geographic location and time stamp for each event.

According to the proposed methodology our aim is to analyse and predict the number of events. 
A parallel goal is the locational-spatial approximation of the events that will, according to trends and 
tendencies, occur in the 12th month of 2008. With the beforehand knowledge of incidents’ locations, 
the service can organise the location of fi ve mobile units in the city, so that assistance can be offered 
in the shortest and most effi cient way. To further evaluate the above process with respect to its accu-
racy, the produced results were cartographically compared to the location of the real incidents of the 
specifi c month.

A multilayer perceptron (MLP) neural network is employed to fi rst, predict the number of inci-
dents. MLP is a hierarchical structure of several perceptrons that learns nonlinear function mappings 
and overcomes the shortcomings of these single-layer networks. The multilayer perceptron is capa-
ble of learning a rich variety of nonlinear decision surfaces. Nonlinear functions are represented by 
multilayer perceptrons with units that use nonlinear activation functions.

After the processes of training and testing were completed, the selected network identifi ed and 
decoded relations among the input data that referred to the fi rst 11 months of 2008, with a linear 
correlation coeffi cient r = 0.97. On the following step and to check whether further calibration of the 
model was needed, the number of incidents for the 12th month of 2008 (test data) was predicted and 
calculated as 56, which compared to the corresponding number of 58 events differs only slightly 
(3.4%), and thus no modifi cation of its functional parameters was needed. (Table 1).

After the prediction of the number of events is completed, the process of approximating the 
 geographical location of each incident follows. To this end, the required time series or  spatiotemporal 
matrix of events is created. Table 2 shows a partial extract of the specifi c database, containing 
 information about each separate event concerning its unitary id, distances from reference point O 
and the X, Y Cartesian coordinates of six points for three successive time periods. To spatially relate 
and match counterpart events, their Cartesian coordinates and T

ioD  distances are sorted and thus 

Table 1: Number or incidents per month.

Month Number of incidents 

January 47
February 46
March 45
April 51
May 42
June 62
July 60
August 40
September 62
October 56
November 53
December 58
Neural net output 56
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Table 3 is created. In the specifi c table, each row represents a fi ctitious spatiotemporal line of inci-
dent movement, which substantiates the methodologically hypothesised evolution process.

As stated earlier, for the months with more incidents than predicted, the referencing points are 
grouped by means of fuzzy logic into 56 clusters. For the months with fewer than 56 incidents, addi-
tional points are generated via spatial interpolation of points from previous and next time periods. 
Finally, when the number of points is the same for each time period, the input matrices are fed to the 
MLP neural network model and the prediction results in terms of the approximated locations of 
points that are shown in Map 1 jointly with the pragmatic ones.

During the fi nal stage of the process, the fi ve fi re engines are optimally sited utilising the Fuzzy 
C-means algorithm. It should be noted that the algorithm is applied both to the prognosed and the 
recorded datasets of incidents, and in this respect, two different solution schemes are generated and 
displayed in Map 1, defi ning in this respect, the prediction and the pragmatic centres.

4.1 Evaluation of results and discussion

To verify from a geostatistic point of view that the results were legitimate and thus acceptable, four 
embedded buffers were created in a GIS environment, incremented by 300 m around each real inci-
dent that was archived for the 12th month of the studied year (Map 2).

As a measure of spatial accuracy we utilise the percentage of the predicted points that fall 
within of each of the three incrementing buffer zones generated around actual events calculating 
in this respect the spatial deviation of the prognosis. In sum, 50.8% of the predicted points lay 
within a range of 300 m of the actual incidents, while 74.2% of them lay within a range of 600 m. 
It should be stressed, however, that incidents located more than 600 m away from the real  incidents, 

Table 2: Event locations per month (demand).

t1 Distance X Y t2 Distance X Y t3 Distance X Y

1 5075 4449 2442 1 5926 3245 4958 1 5925 5667 1730
2 4268 3652 2208 2 6273 5347 3280 2 4538 3521 2863
3 5874 5611 1738 3 5909 5902  300 3 4926 4901  498
4 6098 6055  729 4 6301 4654 4248 4 5861 5080 2923
5 5724 4597 3412 5 5335 4649 2618 5 5621 4719 3054
6 6240 6133 1147 6 5722 5513 1533 6 5860 5611 1690

Table 3: Matrix of interconnected events.

t1 Distance X Y t2 Distance X Y t3 p Distance X Y

2 4268 3652 2208 5 5335 4649 2618 2 4538 3521 2863
1 5075 4449 2442 6 5722 5513 1533 3 4926 4901  498
5 5724 4597 3412 3 5909 5902  300 5 5621 4719 3054
3 5874 5611 1738 1 5926 3245 4958 6 5860 5611 1690
4 6098 6055  729 2 6273 5347 3280 4 5861 5080 2923
6 6240 6133 1147 4 6301 4654 4248 1 5925 5667 1730
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exhibit a westward shift (Table 4, Graph 2) which can be accredited to the geometric idiom of the 
study area.

Subsequently and to investigate whether both distribution refl ect the same spatial pattern, the 
nearest neighbour index R was calculated for both predicted and actual sets. Additionally, the cor-
responding Z value was also defi ned, clarifying in this respect whether or not the H0 hypothesis that 
the distributions statistically coincide with the normal distribution, is true.

The performed statistical analysis of the real incidents occurring in the 12th month indicated that 
R = 0.826 and Z = −2.45. The results, therefore, display a tendency towards clustering, since R < 1. 
The zero case hypothesis H0 has to be rejected, since the value for the normal distribution for a level 
of confi dence of 95% is ± 1.96, which is greater than the value of −2.45 for Z that was observed. The 
corresponding values for the predicted results are R = 0.72 and Z = −3.82. This implies a clustered 
spatial pattern with the null hypothesis to be rejected, since −3.82 is less than ± 1.96. The nearest 
neighbour analysis is also applied to the two sets of fi ve service centres. According to these, the pat-
tern of the real centres for the optimal confrontation of the events of the 12th month is dispersed, 
with R = 1.50 and Z = 2.132. The same resulted for the spatial distribution of the predicted centres 
with R = 1.63 and Z = 2.706, which also implies a dispersed pattern.

Summarising the fi ndings of the evaluation stage of the process, it can be argued that the designed 
and applied neural network model succeeded in the task of analysing and predicting the spatial pat-
tern of demand for the specifi c phenomenon. It can also be stated that in the case where a greater 
volume of diachronic data might be available, the output would be signifi cantly more accurate and 
the observed westward shifting of the predicted points scatter diagram would be minimised. This 

Map 1: Pragmatic and prognosed supply and demand.
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Table 4: Amount of coverage by control buffer.

Buffers Coverage %

300 50.8
600 74.2
900 91.7
1200 97.3

Map 2: Embedded buffers of 300 m around pragmatic events.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1

300 600 900 1200
meters

Graph 2: Percentage of coverage by control buffer.
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fact, however, is largely related to data availability and occurrence frequency regarding the incidents 
of interest in the respective time and place.

5 CONCLUDING REMARKS
In this paper, we introduce a methodological framework for spatiotemporal point pattern analysis 
based on artifi cial intelligence methods, such as neural networks and fuzzy logic, to predict evolve-
ment and distribution of demand and, respectively, defi ne the optimal facilities sites, in stochastic 
location-allocation problems. The problem-solving process is divided in three succeeding stages 
which fi rst, provide corresponding capabilities for diachronic analysis of the spatial pattern of demand, 
second, predict its future evolution, in terms of both size and geographic locations and fi nally, defi ne 
optimal sites for supply centres as well as allocate demand to them. Neural networks and fuzzy logic 
can make a positive contribution to geographical analysis because they offer fl exibility, create models 
without the need for predefi ned rules, do not make assumptions about the nature and interrelatedness 
of the data, are simple from a statistical point of view and provide the ability to learn from data. They 
are also capable of recognising patterns among diachronic data, the volume, quality and consistency 
of which is of critical importance since it greatly affects the robustness and functionality of the result-
ing network. Insuffi cient or limited amount of data can lead to learning process to confi ne to local 
minima, failing to identify relations and interactions among original data.

The location of P service centres follow based on the theory of fuzzy sets, via the implementation 
of the modifi ed algorithm Fuzzy C-means. The overall approach confi rms the mainstream tendency, 
according to which applications of artifi cial intelligence methods in the resolution of spatial prob-
lems provides the possibility of tracking and decoding relations that are not beforehand visible and 
comprehensible. This possibility is of decisive importance, especially when human life is one of the 
most important parameters of the investigated problem, as in the case study presented above con-
cerning the location of fi re brigade vehicles in the Metropolitan area of Athens.

An aspect of the present work that should be examined further is the points’ correspondence pro-
cess which is directly associated with the precision of the predicted pattern. In this paper, the 
correspondence is based on the distance of each point from the Cartesian origin of the reference 
coordinate system and the fi nal results are considered satisfactory. With the defi nition and applica-
tion of alternative matching rules and processes, such as the generation of sequential sets of points 
that belong to different time periods based on their minimum observed spatiotemporal distance and 
the refi nement of the concurrent management of the differing size of the available datasets, the pro-
posed approach is expected to be improved signifi cantly.
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