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ABSTRACT
A set of Romanesque churches at Vall d’Aran, which were built between 11th and 13th centuries, have 
suffered great deformations and geometrical displacements. In some cases, these deformations have 
caused the apparition of convex shapes related to the generatrix of the vaults, which are the inverted 
shape of an arch. Joints have appeared due to the active and passive thrusts as consequence of the inter-
ventions made to keep the structures on equilibrium. The church of Santa Maria d’Arties is probably the 
church where this deformational process is more remarkable. The geometrical assessment of the least 
rigid elements, the pillars, allows to analyse the displacements which have caused the anti-funicular 
shapes on some vaults. It is possible to deduce the regression plane of the displacements of the pillars 
of the central nave, and to define over it the deformation vectors. Thus, the processing of these data 
allows determining the directions of the deformations of the vaults. The deformations of the pillars are 
not perpendicular to the axis of the central vault, so the methodology and results can be very useful to 
understand the nature of the displacements and to maintain those masonry structures.
Keywords: barrel vaults, great deformations, masonry pillars, Romanesque, Valle de Aran.

1 INTRODUCTION
The churches of Valle de Aran, located at the Spanish Pyrenees, were built between the 11th 
and 13th centuries. One of the main characteristics of these buildings is the presence of the 
large deformations in their masonry, which in some cases make up over 7% of the structure. 
One of the most deformed buildings is the church of Santa Maria de Arties (XII), the arches 
and vaults of which have anti-funicular shapes. This anti-funicular shape is the inverse of the 
natural shape of an arch, since it is convex in relation to its axis. One of the causes of these 
deformations is the displacement of the pillars since these are the least rigid elements of the 
structure.

Because of the large deformations, these Romanesque constructions were assessed by sev-
eral authors, such as Emmanuel Viollet-le-Duc (1814–1879), who visited Bossost (1883) 
[1], and later by Lluís Domènech i Montaner (1850–1923), who was Dean of the Escuela de 
Arquitectura de Barcelona (1905) [2]. Subsequently, the Institut d’Estudis Catalans organ-
ized an expedition with the combined historical and archaeological purpose of visiting the 
Valle de Aran and La Ribagorça (1907). Two of the participants were the architects Josep 
Puig i Cadafalch (1867–1956) and Josep Goday i Casals (1881–1936) [3], who suggested 
that these churches were initially covered with timber structures, which were later replaced 
by masonry barrel vaults [4].

Juan Bassegoda i Nonell (1930–2012) stated that formal anomalies are a defining charac-
teristic of the Catalan Romanesque architecture [5]. The case study presented in this paper 
focuses on the church of Santa Maria d’Arties, which is the most assessed building of this 
group (Fig. 1). Its great deformations were predicted during the restoration work of the 1970s 
[6, 7]. Afterwards, José Luis Villanueva i Bartrina first made an issue of the existence of the 
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anti-funicular shapes [8], and in 2009, the structure was assessed by means of finite elements 
(FEM) by the team of Joan Polo i Berroy [9].

The church of Santa Maria d’Arties can be defined as a rectangular space of about 19.60 × 
13.8 m2 until the apsidioles (Fig. 2). This measure is only indicative, as the great deforma-
tions make impossible to accurately set the general building measures. The construction is 
raised with the typical East–West orientation, with a central nave and two collaterals, each 
with four bays with a span of about 5 m.

The central pillars support the formerets arches located under the gathering of the central 
barrel vault and the lateral half-vaults. In the western side of the church, a wooden choir is 
found over the bay of access. The heading is currently finished with a semi-circular apse, 
reconstructed during last years, and the two original apsidioles. All of them are covered with 
hemispherical domes. The naves present a typical deformation pattern according to the struc-
tural arrangement. Vertical supporting elements, especially the pillars, move abroad because 
of the thrusts of vaults. The deformation has been measured, in degrees (α), in the wall or 
column base. Arties has zero degrees in the north vault, one and five in the inner columns and 
four degrees in the south wall. Therefore, the vaults absorb part of deformation. Arties has 
a 0.03 m deformation with a 0.98 m width. High vaults difference is compared with walls' 
width and its deformation. At the case study, Arties is the church with greater difference 
between the keys of the vault, with a 1.91 m of difference; it has a maximum deformation of 
0.21 m. The height and width of the church were compared with the maximum deformation. 
Arties is 9.76 m high and 13.86 m wide, with a 0.03 m deformation.

Figure 1: Santa María of Arties.
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2 OBJECTIVE
This study focuses on the assessment of the geometrical characteristics of the six pillars  
[P

1
 … P

6
] with the objective of studying the displacements that they have suffered [10]. The 

pillars of the central nave have deformed in a specific way, namely, through the masonry 
joints (n

s
). These joints are perfectly visible on pillars P

3
, P

4
, P

5
 and P

6
, while they are more 

difficult to see on P
1
 and P

2
, since these pillars are partially covered by mural paintings. The 

displacements can be assessed according to the coordinates of the centroid of each row (x
ci
, 

y
ci
, z

ci
), and the point of reference is taken from the row of the floor plan, which is considered 

to be undeformable. This establishes the coordinates as (x
ci
, 0, z

ci
). These points allow one 

to define a regression plane P
ri
 for each pillar. Thus, it is possible to define a vector of defor-

mation contained on each plane [P
r1
 … P

r6
]. Finally, these data allow one to determine the 

general tendency of the deformation of the vaults.

3 METHODOLOGY

3.1 Scanned data obtained

The assessment is based on a three-dimensional model obtained with a terrestrial laser scan-
ner (TLS). In the assessment of built heritage, the use of direct measurement techniques for 

Figure 2: Santa María de Arties. Planimetry and section planes.
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architectural surveying requires a large number of resources. The use of massive data capture 
techniques, such as TLS, has recently become prominent in surveying architectural heritage 
[11]. It is a contactless, non-invasive surveying technique that allows for the massive capture 
of geometric and radiometric data of a given surface [12]. Thus, it allows for a quick and easy 
capture of the geometry of objects. The main limitations lie in the management of dense point 
clouds, the texturization of surfaces and the need to place the device in a stable position. In 
addition, cost is a very important limiting factor.

The scanner used is a Leica ScanStation P20, with a bandwidth of 808/658, class 1. The 
scanning ratio is 1,000,000 points, and the noise at 100 is 9.0 mm for black surfaces, 4.30 
mm for grey surfaces, and 1.5 mm for white surfaces. The field of view is 360° horizontal 
and 270° vertical. The point cloud is processed with the software Cyclone, and the program 
3DReshaper is used to obtain the three-dimensional mesh with an average distance of points 
of 5 cm as well as a measure of the triangle for detecting 10 cm holes. The model of the 
interior of the building has 80.582 points and 156.449 triangles, and the exterior has 314.650 
points and 609.472 triangles.

After that the Cyclone software is used. The use of the specific software Cyclone to process 
the data makes it possible to visualize the point cloud obtained and to process and join all of 
the scans. This processing occurs through an automatic process with slight manual adjust-
ments, and a complete, depurated point cloud is obtained.

The assessment of the shapes can only be understood in three dimensions through an inter-
val (a, b), which has to impose the condition of equilibrium according to the elastic theory 
with the summation of the active thrusts (E

ba
) of the vaults and the passive thrusts of the walls 

(E
mp

) and buttresses (E
mc

).

(1)

(2)

The assessment of the deformations of the elements under its own weight, especially the 
central and collateral vaults, makes it possible to deduce that external actions, such as snow 
or seism, together with the loss of lime mortar due to humidity or vibrations causes the primi-
tive function fi(x,y,z) of the vaults, which is unknown, to tend to deform into the function 
ff(x,y,z), which is obtained through the topographical survey.

3.2 Deformations on vaults and pillars

From the point of view of historiography, Emmanuel Viollet-le-Duc (1814–1879) assessed 
the barrel vaults and the abutment with timber beams with more precision [13]. August 
Choisy (1841–1909) did not explain the Romanesque vaults, but did explain the barrel vault 
as originating from Roman construction with brick and concrete [14]. He referred to the byz-
antine influence on construction with or without centring [15]. Otherwise, in the work Histo-
ria General del Arte (1901), Josep Puig i Cadafalch described the great difference between 
the Romanesque vaults, where elasticity is replaced by stability, a concept inherited from 
roman vaults, which were significantly more monolithic [16].

b
F

a

E E E∑( ) + + =( )x,y,z ba mp mc 0.

b

a

M E E E∑ ( ) + + =( )x,y,z ba mp mc 0.
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When the geometry of these vaults is regular and the construction is monolithic due to the 
masonry disposition, the thrust is perpendicular to its guideline. Thus, the thrust of a vault is 
determined through the following function:

(3)

If we consider homogeneous vaults with a constant guideline, the vector of this thrust 
would be, according to Choisy [14], as follows:

(4)

Conversely, barrel vaults of Vall d’Aran churches have specific features. These are conic 
vaults, as was theorized by Joan Bassegoda [5], and stone-cutting is not regular, as stated by 
Josep Puig i Cadafalch [16]. Finally, the supports of the vaults, external walls and arches, 
have a different stiffness, as noted by Luis Villanueva [8]. Those three conditions are far from 
the general theory of the thrust of homogeneous vaults with cylindrical guideline. In addition, 
the assessment of the pillar deformations and their stiffness is influenced by the contributions 
of Josep Puig i Cadafalch (1907).

In any or in a combination of the precedent hypotheses, thrusts work in two directions (x, z) 
as long as the supports stand still. Thus, the resultant force is not perpendicular to the guide-
line of the vault (Fig. 3). The general vectorization in those cases can be defined as the thrust 
of the vault E

b
 (E

bx
, E

by
, E

bz
), and deformations can occur in two directions:

(5)

The forces caused by the vaults are transmitted to vertical structural elements. The vaults 
of the central nave are supported by the walls over former arches, which at the same time 
are supported by the pillars of the central nave. Thus, the elements can deform over the three 
planes, pillars df

p
(df

px
, df

py
, df

pz
), and perimeter walls df

m
(df

mx
, df

my
, df

mz
).

The displacement of the pillar can be deduced through analysis of the displacement of the 
centroid of n sections (n

s
) of the pillar. Thus, coordinates (x

ci
, y

ci
, z

ci
) are set for each section 

(n
s
). The centroid of reference (x

c0
, y

c0
, z

c0
) is set in the section of the floor plan since it would 

have not suffered any displacement. The final section is located at the impost of the pillar 
(x

cs
, y

cs
, z

cs
). The obtained points define a function f (

ci
), which makes it possible to deduce the 

regression plane P
ri
. It characterizes the tendency of the displacement vectors of the structural 

section supported by the pillar (Fig. 4).
The assessment of this displacement vector determines the clearance angle (ω) of the regres-

sion plane P
ri
 of the plane over the directrix of the vault (τ). Thus, this angle can be understood as:

(a)  (ω 
ϕ
) = 90°, perpendicular to the directrix ϕ

1
,

(b)  (ω 
ϕ
) < 90°, displacement towards the apse,

(c)  (ω 
ϕ
) > 90°, displacement towards the façade.

The reparation and containment of these deformations are the cause of the reinforcement 
of the perimeter walls by means of the construction of buttresses or strategical placement of 
bell towers, which are usually built in the façade opposite to the apse. The active thrusts (E

ba
) 

of the vaults over pillars and walls have been determined, but to understand the equilibrium 

E
b
(E

bx
, E

by
, E

bz 
).

E
b
(E

bx
, 0, 0

 
).

f(df
x
, 0, df

z
)
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Figure 4: Characterization of the thrusts on vaults pillars.

of these constructions, it is essential to understand the passive thrusts of the buttressing ele-
ments: walls (E

mp
) and buttresses (E

mc
). Because of these thrusts, some vaults have deformed 

towards anti-funicular shapes.

3.3 Process of study

The point cloud is processed with the program 3D Reshaper to obtain the displacement 
vector and the clearance angle (ω). The first step is the isolation of every pillar shaft. The 

Figure 3: Characterization of the thrusts on vaults.
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height of these elements is variable, and in most of them, there is no clear base or capital, 
so the measure of the shaft is defined between the encounter with the floor and the springs 
of the arches.

The second step consists of the definition of the stone rows and then a cross section is made 
on each of them. The process is performed manually, since the irregular shape of the slabs 
caused excessive errors with more automated procedures. The contour and the barycentre 
is defined for each of the cross sections, which allow to obtain the area and the central axis 
respectively. The area allows to deduce the springing of the arches in the cases where there 
are not any impost.

The assessment of the barycentres is used to know the displacements of the pillars. These 
elements have a compressed part and another under tensile strength, so the central axis is the 
only part that can explain their shape. This is deduced from the union of all the barycentres 
of each cross section. Two operations are performed with this line: first, the projection over 
the horizontal plane to know the direction of axis (τ). Second, the projection over the plane 
which crosses the axis of maximum deformation.

4 RESULTS
Results are drawn over the floor plan, where the relation between the regression planes P

ri
 and 

the clearance angle (ω) is shown.
The greatest displacement is found in pillar P1 (Table 1), with a range of displacement on 

each row of [0.270, 0.001]. That displacement is followed by that in pillar P3, with a range of 
[0.190, 0.001]. The range of displacements of the rest of the pillars is as follows: P2 [0.108, 
0.002], P4 [0.109, 0.002], P5 [0.101, 0.001], and finally, the least deformed pillar, P6 [0.065, 
0.001]. Thus, pillars P1, P3 and P5 have greater deformations than the others. These are 
located in the North face, where a massive buttress of 131.04 m3 was built, which causes a 
passive thrust (Emc). The wall at the south face has a volume of 179.91 m3, which was later 
reinforced with four buttresses of 44.96 m3.

None of the regression planes P
ri
 is perpendicular to the axis of the central vault, and so 

each one is slightly sloped. The most leaned pillar is found in P
1,
 with a horizontal displace-

ment of 0.270 m. The angle between the regression plane and the central axis is 85.466°, 
which is (ω 

ϕ
) < 90° (Fig. 5). The angle at the rest of the have the following values (ω 

ϕ
) > 

90°, with a range of [103.893°, 126.169°]: [P
2
; 103,893°], [P

3
; 108,665°], [P

4
; 117,245°], [P

5
; 

112,066°] and [P
6
; 126,169°].

Moreover, P
1
 is not only the most inclined pillar (0.270 m), but also is the highest (4.170 m). 

About the rest of the pillars, P
2
 has leaned (0.108 m), and is the second highest pillar (3.940 

m). Pillar P
3
 has leaned (0.190 m) and has a height of (3.888 m), pillar P

4
 has leaned (0.109 m) 

and has a height of (3.930 m), pillar P
5
 has leaned (0.101 m) and has a height of (3.587 m) and 

finally pillar P
6
 has leaned (0.065 m) and has a height of (3.684 m). (Table 1)

These data reveal that the leaning is proportional to the height of the pillar. In addition, 
northern pillars are less out of plum than the southern ones.

5 DISCUSSION AND CONCLUSION
The main factor of pillar deformation is the vault height. It gets obvious in the study of vector 
deformation. The forces caused by the vaults are transmitted to vertical structural elements. 
The vaults of the central nave are supported by the walls over former arches, which at the 
same time are supported by the pillars of the central nave.

The displacement of the pillar deduced through analysis of the displacement of the centroid 
of n sections (n

s
) of the pillar can be studied the direction and vector magnitude. In relation 
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to the direction of the vector, the obtained regression planes P
ri
, which contain the deforma-

tions df
p
(df

px
, df

py
, df

pz
) for each pillar, tend to have the direction of the thrust over the pillar 

P
i
. These displacements are the result of the active thrusts of vaults and the passive thrusts 

of the buttressing system, walls (E
ba

) and the passive thrusts of the buttressing system, walls 
(E

mp
) and buttresses (E

mc
).

This study revealed that the direction of the displacements of the six pillars P
i
 is not perpen-

dicular to the central axis of the church ϕ
1
, since (ω 

ϕ
) ≠ 90°. This result proves the hypothesis 

Table 1:  Characteristics of the displacement vector (the angles refer to the inclination of the 
vector in respect to the vertical).

Pillars Max.Disp.X Min.Disp.X Angle Pillar length Pillar height Cos(°)-(P1/Ph)

(M) (M) (°) (M) (M) (°)
P1 0.270 0.001 3.780 4.183 4.170 0.200
P2 0.108 0.200 1.780 3.930 3.940 0.790
P3 0.190 0.001 2.850 3.890 3.888 0.043
P4 0.109 0.002 1.710 3.774 3.770 0.862
P5 0.101 0.001 1.670 3.590 3.587 0.902
P6 0.065 0.001 1.170 3.687 3.684 0.611
Max 0.270 0.002 3.780 4.183 4.170 0.200
Min 0.065 0.001 1.170 3.590 3.587 0.611
Average 0.141 0.001 2.160 3.842 3.840 0.445

Figure 5: Characterization of the regression planes P
ri
.
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that the thrusts of the vaults are not perpendicular to the axis of the church, as was the case in 
Roman vaults, which Choisy [14] defined with regular geometry and stone-cutting.*** The 
direction of displacements is caused by the irregular geometry of the vaults of Santa Maria 
de Arties as well as the masonry stone-cutting and the above mentioned passive thrusts of 
the walls and buttresses. The last ones were placed to maintain equilibrium during the last 
millennium.

The displacement of the five pillars (P
2
 ... P

5
), where (ω

ϕ
) > 90°, tends to the opposite 

façade of the apse. In addition, pillars P
5
 and P

6
, built during 12th century on that façade, are 

the least deformed pillars because of two subsequent transformations: the construction of 
the bell tower over the centre of the façade (XIII–XIV) and the wood choir (XVIII). These 
elements have a stiffening function. Pillar P

1
 is the most deformed pillar of Santa Maria de 

Arties and has (ω 
ϕ
) < 90° over the main axis. The displacement tends to the apse. This pillar, 

together with pillar P
3
, where (ω 

ϕ
) > 90°, is located where a great balancing was achieved 

through the passive thrust of the walls (E
mp

) and buttresses (E
mc

).
Figure 5 shows that the direction of deformation does not coincide with the butress loca-

tion. For example, the P2 deformation is directed to wall span. The same situation occurs in 
the P6 of the North façade. From another point of view, the buttress construction allows the 
interpretation of anti-funicular shapes. The specific weight is more than 24 kN/m3, and the 
buttressing system weighs 3,144.96 kN. This is where anti-funicular shapes have appeared, 
which are inverted arches, so ff"(x) > 0. The reparation and containment of these deforma-
tions are the cause of the reinforcement of the perimeter walls by means of the construction 
of buttresses or strategical placement of bell towers, which are usually built in the façade 
opposite to the apse. The active thrusts (E

ba
) of the vaults over pillars and walls have been 

determined, but to understand the equilibrium of these constructions, it is essential to under-
stand the passive thrusts of the buttressing elements: walls (E

mp
) and buttresses (E

mc
). Due to 

these thrusts, some vaults have deformed towards anti-funicular shapes.
As far as the pillar deformation magnitude is concerned, P

1
 is the most deformed pillar of 

Santa Maria de Arties with 0.270 m deformation. P3 pillar follows it with a deformation of 
0.190 m. This fact is coincident with the embankment of the ground.

Another explanation to justify the less deformation of pillars (P
3
, P

4
, P

5
, P

6
) is that they are 

in contact with the wood joists of the choirs. The wood makes a job helping on the traction. 
The P

3
 and P

4
 pillars have two intermediate wood ties and they show a 0.190 m and 0.109 m 

deformation. P5 and P6 pillars show a 0.101 m and 0.065 m deformation and they are con-
nected to three wood ties.

Another important piece of data is the one obtained from the relation between the pillar 
length and height. The trigonometric relation of the cosinus angle minus the difference 
between the pillar length and pillar heights must be zero. It shows that none of the pillars has 
a straight axis. To understand this result, it is needed to study the development of the axis 
along the pillar.
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