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ABSTRACT
Carbon dioxide (CO2) is an appropriate replacement for conventional refrigerants due to its low global 
warming effects. However, its application within a traditional refrigeration compression cycle leads 
to low thermodynamic performance due to the large expansion losses in a throttling process. The 
application of ejectors allows reducing these losses. Many scenarios of ejector-based cycles have been 
proposed. Among them four different configurations may be distinguished: an expansion work recovery 
cycle (EERC), a liquid recirculation cycle (LRC), an increasing compressor discharge pressure cycle 
(CDPC) and a vapor jet refrigeration cycle (VJRC). This study deals with the comparative analysis of 
these cycles. In order to study the performance of the cycles, the numerical simulations are developed 
using EES software. Two performance criteria, energy efficiency (COP) and exergy efficiency are 
evaluated for each cycle. The highest values of these criteria point to the most thermodynamically 
efficient cycle. The results show that the EERC has the highest COP and exergy efficiency compared 
to other cycles. For example, the COP of the EERC is 3.618 and the exergy efficiency is 9.68%. The 
COP (resp. exergy efficiency) is approximately 23.3% (resp. 23.3%), 24.9% (resp. 25.5%) and 5.6 
times (resp. 56.2%) higher than the corresponding energy and exergy efficiencies of LRC, CDPC and 
VJRC.  Moreover, in comparison with a basic throttling valve cycle, the COP and exergy efficiency 
in EERC are higher up to 23% and 24% correspondingly. The detailed exergy analysis of EERC cycle 
has pinpointed the equipment where the major exergy losses take place. The largest losses occur in the 
evaporator (about 33% of the total exergy destruction of the cycle) followed by the compressor (25.5%) 
and the ejector (24.4%).
Keywords: comparative analysis, COP, ejector, exergy efficiency, refrigeration systems, transcritical 
CO2 cycles, two-phase.

1 INTRODUCTION
Carbon dioxide (CO2) is an appropriate replacement for conventional refrigerants due to its 
low global warming effects. One of the disadvantage of the cycle is a large exergy loss due to 
an important pressure reduction during expansion of CO2 from the supercritical to the sub-
critical state in a throttling valve. Among different devices for expansion work recovery, 
ejector is a favourable equipment, which enables to reduce losses by recovering part of the 
expansion work in a throttling process and improve the cycle’s efficiency.

The first application of two-phase ejector to the transcritical CO2 cycle was first described 
by Gay [1]. It was proposed to replace the expansion valve by a two-phase ejector to reduce 
the losses due to the throttling process.

Kornhauser [2] was the first to develop a one-dimensional and homogeneous model of a 
two-phase ejector using R12 as a refrigerant in the ejector expansion refrigeration system 
(EERS).

Li and Groll [3] adapted the Kornhauser’s model for an ejector used within a transcritical 
CO2 air-conditioning system. 

A thermodynamic exergy analysis of transcritical CO2 ejector refrigeration system was 
performed by Fangtian and Yitai [4]. They evaluated COP and exergy destruction of the 
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system. Their results showed an improvement of 30% in COP and decreasing exergy loss 
more than 25% compared to the conventional system.

The present study is focused on a thermodynamic comparative analysis of the perfor-
mance of the different transcritical CO2 ejector cycles to identify the most efficient one. The 
COP, exergy efficiency and exergy destructions are calculated and compared for the expan-
sion work recovery cycle (EERC), liquid recirculation cycle (LRC), increasing compressor 
discharge pressure cycle (CDPC) and vapor jet refrigeration cycle (VJRC). Exergy analysis 
is employed to determine the amount and locations of irreversibilities within different  
components of each cycle.

2 EJECTOR APPLICATIONS FOR TRANSCRITICAL CO2 CYCLES
Different applications of the ejector in CO2 air-conditioning and refrigeration systems used 
in this study are as follows:

•  Ejector for utilization of low-grade energy (vapor jet ejector systems, VJRC)

 • Ejectors for expansion work recovery cycle (standard two-phase ejector, EERC)

 • Ejectors for liquid recirculation cycle (LRC)

 • Ejector for increasing compressor discharge pressure (CDPC)

2.1 Vapor jet ejector systems (single-phase ejectors)

In the vapor jet cycle, a pump, a generator, and an ejector replace the compressor. A fraction 
of the liquid from the condenser is pumped to a high pressure and temperature. The fluid 
absorbs heat at a constant pressure from a low-grade energy source in the generator. The 
heated flow expands in a primary nozzle to a high velocity and a low pressure. This low pres-
sure entrains the secondary flow from the evaporator into the mixing chamber of the ejector. 
The irreversible mixing of the two fluids occurs in the mixing chamber depending on the 
ejector geometry at the constant pressure or at the constant area. Finally, the flow decelerates 
in the diffuser by converting the remaining kinetic energy into the pressure increase. The 
vapor exiting the diffuser is condensed at a constant pressure. The liquid at the condenser exit 
is pumped to the generator. The vapor is sent through the metering valve to the evaporator.

The main advantage of the VJRCs is that they can produce a refrigeration effect by using 
the low-grade waste heat for heating the primary flow in the generator.

Compared to a conventional system, for the same pressure increase, the work of the liquid 
pump in the VJRC is less than the compressor work and it does not also require any lubrica-
tion [5]. The schematic of a transcritical CO2 VJRC and corresponding temperature-specific 
entropy diagram are shown in Fig. 1. It can be seen the flow through the mixing section and 
the diffuser remains vapor so the ejector works in a single-phase mode.

2.2 Two-phase ejectors for expansion work recovery (EERC)

A two-phase ejector can be used in vapor compression systems for recovery of the expansion 
work by reducing the throttling losses to improve the performance of the system.

As shown in Fig. 2, the subcritical CO2 coming from the vapor port of the separator is com-
pressed to high pressure and temperature to the supercritical state. It releases heat in the gas 
cooler. After the gas cooler exit, the stream enters the primary nozzle of the ejector and expands 
at the mixing section. The secondary vapor stream pre-accelerates into the mixing section. The 
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mixture then flows through the diffuser what causes a compression before entering the separa-
tor. Vapor portion of the two-phase flow returns to the compressor while the pressure of the 
liquid portion is reduced through the metering valve before entering the evaporator. The stream 
absorbs heat in the evaporator before it enters the ejector.

EERC has two main advantages. First, the cooling capacity increases because the isen-
tropic expansion inside the primary nozzle in comparison to an isenthalpic expansion valve 
of a conventional system has a larger enthalpy difference. Second, the compressor work is 
decreased due to the increase of the suction pressure of the compressor resulting in COP 
improvement.

2.3 Two-phase ejectors for liquid recirculation

In this cycle, the ejector is used to recirculate liquid and improve the evaporator performance. 
It was first patented by Phillips [6] and later by Lorentzen [7]. Figure 3 shows a schematic of 
the cycle and corresponding T-S diagram for transcritical CO2. The expansion work 

Figure 1: Transcritical CO2 vapor jet refrigeration cycle and corresponding temperature-
specific entropy diagram.

Figure 2: Transcritical CO2 ejector expansion recovery cycle and the corresponding 
temperature-specific entropy diagram.
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recovered by the ejector is used to liquid recirculation. The amount of COP improvement by 
using liquid recirculation is dependent on the working fluid used. There is also an optimum 
value for every system and operating condition because with increasing the recirculation both 
the heat transfer coefficient and the pressure drop increase [8].

Lawrence and Elbel [8] studied two applications of the two-phase ejector cycle for CO2 as 
a working fluid: first was liquid recirculation cycle that used the ejector to improve the evap-
orator performance and other was a standard two-phase ejector that used work recovery of the 
ejector to increase the compressor pressure. The COP improvement of 3% through CO2 ejec-
tor was obtained in the recirculation cycle as it could reach up to 25% in a standard two-phase 
ejector to directly unload the compressor pressure.

2.4 Two-phase ejector for increasing compressor discharge pressure

This innovative cycle was recently introduced by Bergander [9]. In this cycle, ejector is used 
as a second-stage compressor. Unlike standard two-phase ejector which increases the suction 
pressure of the compressor, in this cycle, the ejector is used to increase the compressor dis-
charge pressure. In a subsequent work, Bergander [10] developed a thermodynamic ejector 
model for R22 and conducted experiments that showed 16% COP improvement. In this cycle, 
there is a two-phase flow inside the ejector, liquid for the primary flow and vapor for the 
secondary one. The primary flow enters the ejector after exiting the pump and mixes with the 
secondary flow that comes from the compressor. The flow at the exit of the ejector enters the 
gas cooler. The layout of this cycle and corresponding T-S diagram are presented in Fig. 4.

3 EXERGY ANALYSIS OF DIFFERENT EJECTOR CYCLES
The exergy analysis of the ejector cycles introduced in Section 2 is carried out to investigate 
the exergy destruction of the different components of the system to determine the maximum 
performance and potential improvements of the cycles.

3.1 Modeling of two-phase flow ejector

Different models of the ejectors exist according to assumptions, governing equations, auxil-
iary conditions, mixing mechanism and solution methods. Thermodynamic modeling is a 
simple way to solve the equations in one dimension. It is also easily integrated into a system. 

Figure 3: Transcritical CO2 liquid recirculation cycle and the corresponding temperature-
specific entropy diagram.
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Conservation equations of mass, energy and momentum, some gas dynamic equations, 
state equations, isentropic relations as well as some appropriate assumptions, initial and 
boundary conditions are used to solve the flow within the ejector. Some assumptions that are 
usually employed to simplify the problem are as follows: adiabatic walls of the ejector, 
steady-state flow, isentropic efficiencies for the nozzles and the diffuser, stagnation points of 
the streams at inlets and outlet of the ejector and mixing coefficient for mixing losses.

Most ejector models presented for CO2 two-phase flows are based on a homogeneous 
equilibrium model in which both gas and liquid are in thermodynamic and mechanical equi-
librium. It means that both phases have the same pressure, temperature, velocity, turbulence 
kinetic energy and turbulence dissipation rate [2, 3, 11–16].

3.1.1 Assumptions and calculation procedure
The thermodynamic model of the two-phase ejectors (EERC, LRC, CDPC, section 2.2~2.4) 
is based on the following assumptions:

1. Flow is one-dimensional, steady state and adiabatic through the ejector.
2. The homogeneous equilibrium is assumed for two-phase flow.
3. The CO2 thermodynamic and transport properties of the primary and secondary flows are 

obtained from real fluids properties.
4. Flow losses in the pipes and heat exchangers are negligible.
5. Kinetic energies of the refrigerant are negligible at the ejector inlet and outlet.
6. Friction losses are defined in terms of isentropic efficiencies in the nozzles, diffuser and 

mixing.
7. Mixing occurs under a constant pressure in the ejector mixing section with the assump-

tion that the fluid momentum is conserved.
8. Pressure loss of the secondary flow is assumed ∆P=1bar for EERC, LRC, CDPC.
9. Critical-mode operation is applied for VJRC and normal shock takes place at the end of 

the constant area mixing chamber [17, 18] .
10. The secondary inlet flow is considered as a saturated vapor in EERC, saturated liquid in 

LRC, superheated vapor in CDPC.
11. The heat sink temperature (or the ambient temperature) is 35°C for EERC, LRC, CDPC 

and T Tgen in gen out, , /+( ) + °2 5 C for VJRC; the heat source temperature is 27°C.

Figure 4: CO2 transcritical ejector cycle to increase the compressor discharge pressure and 
corresponding temperature-specific entropy diagram.
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The constant parameters used in the simulations of the cycles are shown in Table 1.
An engineering equation solver (EES) program is used to solve the proposed models in 

Section 2, which combines non-linear equations with thermo-physical property functions.
The modeling of the ejector expansion recovery cycle is based on one unit of mixing 

refrigerant mass flow in the mixing sector of the ejector. Therefore, the primary mass flow 
from the gas cooler is 1 1/ +( )ER  and the secondary mass flow from the evaporator is ER/
(1 + ER).

The model is solved according to the relationship between the vapor quality of the ejector 
outlet and the entrainment ratio. The solution converges when eqn (1) is satisfied to maintain 
a balance between liquid and vapor in the expansion recovery cycle:

 x
ERout diff, =

+

1

1
 (1)

First the properties at different states of the cycles are calculated. In EERC, according to 
Fig. 3, the specific enthalpy at gas cooler and evaporator exit (h h3 10, ) are defined. The motive 
flow expands to mixing pressure with a nozzle efficiency ηpn defined as:

 ηpn
s

h h

h h
=

−

−

3 4

3 4

 (2)

where

 h f P ss evap4 3= −( )∆P,  (3)

By applying energy conservation law between state 3 and state 4, the velocity at state 4 is 
obtained:

 
1

2 4
2

3 4u h h= −  (4)

The velocity of secondary flow (u5) is calculated in the same way as that of the primary flow 
and then the velocity of mixed flow is determined by the momentum equation in mixing 
chamber according to:

 u u u6 6 4 4 5 5m m m= +  (5)

The mixing efficiency is defined as [19] :
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m u

m u
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1
2
1
2

4 4

2

4 4
2
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 (6)

Table 1: Constant parameters used in the simulation.

Pressure of gas cooler 88 bar Cooling capacity 72 kW
Temperature of gas cooler exit 36°C Efficiency of Nozzles 0.8
Temperature of evaporator 5°C Efficiency of diffuser 0.8
Temperature of generator exit (VJRC) 100°C Efficiency of mixing 0.95
Pressure of generator (VJRC) 88 bar Efficiency of compressor 0.75
Pressure of evaporator 39.69 bar Efficiency of pump 0.75
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where u
4,  is the corrected velocity at state 4 which takes into account the mixing loss.

The energy conservation between two inlets and outlet of the ejector is as follows:

 m h m h m h3 3 10 10 7 7+ =  (7)

The energy conservation between inlet and outlet of the diffuser is described as:

 
1

2 6
2

6 5u h h+ =  (8)

The diffuser efficiency is defined as:

 ηdiff
sh h

h h
=

−

−

7 6

7 6

 (9)

The pressure and quality at the ejector outlet (state 7) are obtained as

 p f s h s7 6 7= ( ),  (10)

 x f p h7 7 7= ( ),  (11)

This quality satisfies the eqn (1). The cooling capacity of the cycles (Figs. 1–4) can be 
written:

 Q m h h
ER

ER
h hev evap out evap in evap out evap in evap= −( ) =

+( ) −, , , ,1
(( ) (12)

The compressor power consumption is

 W m h h
ER

h hcomp comp out comp in comp out comp in com= −( ) =
+( ) −, , , ,

1

1 pp( ) (13)

The gas cooler capacity is:

 Q m h h
ER

h hgc gc out gc in gc out gc in gc= −( ) =
+( ) −( ), , , ,

1

1
 (14) 

The cooling coefficient of performance (COPc )for EERC and LRC is obtained using:

 COP
Q

WC

evap

comp

=  (15) 

For the cycle including the pump (CDPC) the COPc is defined as

 COPC
evap

comp pump

=

+

Q

W W
 (16)

For vapor jet refrigeration system, VJRC, it is expressed as

 COP
WC

evap

gen pump

=

+

Q

Q
 (17)
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3.1.2 Exergy calculations
The exergy in all states is calculated based on the unit mass flow of mixing refrigerant in the 
ejector:

 ex m h h T s sk k k k= ⋅ ( )− ⋅( )



0 0 0  (18)

where mk  is the mass flow at the cycle state k.
The exergy destructions in the various processes are calculated as follows:

Compressor:

 ex ex ex Wloss comp in comp out comp comp, , ,= − +  (19)

Gas cooler:

 ex ex ex Q
T

Tloss gc in gc out gc gc
sink

, , ,= − + −




























⋅ 1 0  (20)

Ejector:

 ex ex ex exloss ej in pn in sn out diff, , , ,= + −  (21)

Evaporator:

 ex ex ex Q
T

Tloss evap in evap out evap evap
source

, , , .= − + −
















1 0












 (22)

Throttling valve:

 ex ex exloss th in th out th, , ,= −  (23)

The total exergy destruction is calculated using:

 ex ex ex ex ex ex ex VJRC exloss tot comp ej th evap gc gen co, = + + + + + ( ) + nnd VJRC( ) (24)

The exergy efficiency of the cycles is evaluated as:

 ηex
loss tot

comp

ex

W
= −1 ,  (25)

For the cycle includes the pump, CDPC, exergy efficiency is as following:

 ηex
loss tot

comp pump

ex

W W
= −

+

1 ,  (26)

For VJRC (Fig. 1), exergy efficiency and total exergy loss are calculated by:

 ηex
loss tot

pump Q ge Q cond

ex

W ex ex
= −

+ +

1 ,

, ,

 (27)

 ex ex ex ex ex ex exloss tot pump gen cond ej th ev, = + + + + +  (28)

where exQ gen,  and exQ cond,  are exergy transfer by heat in generator and condenser respectively 
which are defined as:

 ex Q
T

TQ = −




















. 1 0  (29)
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4 RESULTS
The comparison of the results for four transcritical CO2 refrigeration cycles is presented 
below. Exergy destructions and exergy efficiencies of the cycles are calculated under constant 
cooling capacity and corresponding parameters listed in Table 1.

As shown in Tables 2 and 3, the EERC has the highest COP and exergy efficiency. For the 
high-side pressure of 88 bar, the COP for EERC is 23.3%, 24.9% and 5.6 times higher than 
the COP for LRC, CDPC and VJRC, respectively.

It is also shown that EERC improves the COP by up to 23.1% compared to basic cycle 
without the ejector, while the COP of LRC and CDPC remains almost constant and for VJRC, 
the COP is very low. For given operating conditions, the pressure ratio of EERC is also the 
largest among other cycles.

Table 2: Comparison of the ejector’s performance of the cycles.

Device Ejector performance

EERC LRC CDPC VJRC BC

COP 3.618 2.935 2.896 0.6476 2.938
ER 0.564 0.641 1.558 0.921 -

Pratio
1.15 1.03 1.01 1.11 -

Table 3: Exergy destructions and exergy efficiencies of the cycles (Pgc = 88 bar, Tevap = 5°C, 
Qevap=72KW).

Device

Exergy Loss, Kw

EERC LRC CDPC VJRC BC

Loss, 
kW %

Loss, 
kW %

Loss, 
kW %

Loss, 
kW %

Loss, 
kW %

Compressor 4.58 25.5 5.539 24.55 5.475 23.86 – – 5.533 24.5
Gas cooler 2.817 15.68 3.515 15.55 1.679 7.317 – – 3.511 15.55
Ejector 4.382 24.38 7.705 34.08 2.082 9.074 12.82 43.91 – –
Valve 0.338 1.878 – – 7.696 33.54 0.2198 0.753 7.696 34.07
Evaporator 5.854 32.57 5.847 25.86 5.847 25.48 5.808 19.89 5.847 25.88
Generator – – – – – – 4.931 16.89 – –
Condenser – – – – – – 4.73 16.2 22.59 –
Pump – – – – 0.165 0.72 0.686 2.35 – –
Total 17.97 100 22.61 100 22.94 100 29.2 100 24.51 100 
Wcomp 19.9 – 24.53 – 24.19 – – – – –
Wpump – – – – 0.668 – 2.558 – – –
exQ,evap -1.919 – -1.919 – – – -1.919 – -1.919 –
exQ,,gen – – – – – – 8.8 – – –
exQ,cond – – – – – – 19.76 – – –
Qgen – – – – – – 108.6 – – –

ηex
– 9.683 – 7.856 – 7.718 – 6.197 – 7.831 
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Table 3 shows the exergy losses in each component and exergy efficiency of all cycles. It 
can be noticed that EERC has the maximum exergy efficiency. The entrainment ratio and 
pressure ratio are 0.564 and 1.15 for EERC, respectively. The exergy loss in the evaporation 
process is the largest one in this system, while for LRC and VJRC, the largest loss occurs in 
the ejector.

The throttling exergy loss in the basic cycle is 7.69 KJ kg-1 that constitutes 34.07% of the 
total exergy loss. However, it is only 0.34 KJ kg-1, 1.88% of the total exergy loss in EERC and 
the ejector’s exergy loss is also 4.383 KJ kg-1, 24.4% .The sum of these two losses is 26.28% 
of the total exergy loss of the system which is less than the throttling loss in the conventional 
cycle. The exergy loss in compressor and gas cooler are also reduced in EERC, and it is 
almost constant in the evaporator.

The use of liquid recirculation in refrigeration system improves the entrainment ratio com-
pared to EERC; however, COP and exergy efficiency remain constant compared to 
conventional cycle. Therefore, despite a large amount of work that can be recovered with the 
CO2 ejector, there is not the COP improvement for LRC.

The CDPC simulation shows that the ejector integration with this cycle is not efficient. It is 
due to the fact that the pressure lift is accomplished mainly by the compressor not the ejector. 
The pressor ratio is obtained 1.01 for this cycle.

The jet refrigeration cycle (single phase ejector, Fig. 1) achieves the lowest COP and the 
lowest exergy efficiency compared to other cycles. The low COP value around 0.65 is 
obtained. The high exergy losses of heat transfer in condenser (16.2%) and generator (16.9%) 
result in low exergy efficiency.

5 CONCLUSION
A comparative study based on the first and second laws of thermodynamics is performed for 
different transcritical CO2 refrigeration cycles that use an ejector: EERC, LRC, CDPC and 
VJRC. The analysis for given conditions led to the following conclusions:

•  Transcritical CO2 refrigeration cycles, EERC has the highest COP and exergy efficiency. 
For the given operating conditions, it improves the COP and exergy efficiency by up to 
23% and 24%, respectively, compared to the basic throttling cycle.

 • In EERC, the irreversibility loss of the expansion process is significantly reduced compared 
to basic throttling valve cycle and as a result the exergy efficiency is increased.

 • The COP of EERC is improved by up to 23.3%, 24.9% and 5.6 times compared to the 
LRC, CDPC and VJRC.

 • The exergy loss in the evaporation process is the largest loss in EERC, whereas for LRC 
and VJRC the ejection process has the largest loss.

 • The use of liquid recirculation improves entrainment ratio compared to EERC, however, 
COP and exergy efficiency decrease.

 • CO2 can gain more benefit from EERC compared to other cycles. CO2 ejector liquid 
recirculation cycle and VJRC has a low potential for COP improvement.

 • Ejector is not effective in the cycle for increasing compressor discharge pressure because 
the pressure lift is mainly accomplished by the compressor.
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