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ABSTRACT
Roadside air pollution is a major issue due to its adverse effects on human health and the environment. 
This highlights the need for parsimonious and robust forecasting tools that help vulnerable members of 
the public reduce their exposure to harmful air pollutants. Recent results in air pollution forecasting ap-
plications include the use of hybrid models based on non-linear autoregressive artificial neural networks 
(ANN) with exogenous multi-variable inputs (NARX) and wavelet decomposition techniques. How-
ever, attempts employing both methods into one hybrid modelling system have not been widely made. 
Hence, this work further investigates the utilisation of wavelet-based NARX-ANN models in the short- 
and long-term prediction of hourly NO

2
 concentration levels. The models were trained using emissions 

and meteorological data collected from a busy roadside site in Central London, United Kingdom from 
January to December 2015. A discrete wavelet transformation technique was then implemented to ad-
dress the highly variable characteristic of the collected NO

2
 concentration data. Overall results exhibit 

the superiority of the wavelet-based NARX-ANN models improving the accuracy of the benchmark 
NARX-ANN model results by up to 6% in terms of explained variance. The proposed models also 
provide fairly accurate long-term forecasts, explaining 68–76% of the variance of actual NO

2
 data. In 

conclusion, the findings of this study demonstrate the high potential of wavelet-based NARX-ANN 
models as alternative tools in short- and long-term forecasting of air pollutants in urban environments.
Keywords: artificial neural networks, air pollution, air pollution forecasting, NARX, wavelet transform.

1 INTRODUCTION
Roadside air pollution continues to attract special attention from both decision-making and 
scientific communities as it is being linked to premature mortalities and chronic illnesses 
among individuals residing in densely populated areas [1]–[3]. This highlights the need for 
air pollution monitoring and early-warning systems. Automated monitoring sites measure 
the concentrations of several key air pollutants and meteorological variables, contributing to 
the development of a time series database. Through the collected data, modelling tools are 
trained to model air pollution evolution and spatiotemporal trends. Air quality forecasts can 
assist legislators and urban city planners in making informed protection measures to manage 
air pollution and traffic [1], [2]. They also provide the public with early-warning updates that 
influence the daily behaviour of the public during potential peak pollution events.

Artificial neural networks (ANNs) are among the most popular black-box tools in air pol-
lution forecasting applications [5]–[7]. Inspired by the information-processing mechanisms 
of biological neurons, ANNs have been shown to be robust tools capable of nonlinear map-
ping and self-adaptation [4]. However, ANN models have difficulties dealing with extreme 
levels of air pollutant concentrations [8], [9]. This can be explained by the limited con-
tinuous observations of the extreme pollutant levels leading to fewer representative training 
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data, e.g. the imbalance data problem, and the highly variable concentration levels at a local 
scale. Due to the data-driven nature of ANN models, the manner the inputs are represented 
has a direct influence on the performance of ANN models. [10], [11].

Wavelet transformation is a technique applied to decompose a given original function, 
e.g. an air quality time series, into several subseries with lesser variability. The utilisation of 
wavelets with ANNs in the context of air pollution forecasting has been proposed in recent 
years. For instance, a wavelet-based Support Vector Machine model was applied to predict 
CO levels at various locations in Warsaw, Poland. A wavelet transformation with an ensemble 
of ANN models was applied to predict daily average levels of PM

10
 in Warsaw, Poland [12]. A 

wavelet-feedforward ANN model was employed to predict hourly levels of O
3
 at three urban 

sites in Oltenia, Romania [2]. Finally, wavelet transformation was applied with ANN models 
to predict daily PM

10
 levels at an urban site in Chongqing, China [13]. 

However, the results pertaining to the effectiveness of wavelet transformation in improv-
ing the performance of ANN models in air pollution forecasting are still limited. The effect 
of wavelet transformation on the performance of models should be further investigated to 
ensure that the said method is practical when implemented in rapid air quality forecasting 
schemes.

Therefore, this study presents the use of wavelet-based non-linear autoregressive ANN 
with exogenous multi-variable inputs (NARX) models, or NARX-ANN models, in forecast-
ing roadside NO

2
 levels. The proposed methodology is tested using the data collected from 

a busy street in Central London, United Kingdom. Furthermore, benchmark NARX-ANN 
models are employed to test the effectiveness of the proposed hybrid approach. The rest of 
the paper is structured as follows. The area description, data analysis and pre-processing 
methods, and the modelling techniques implemented are described in Section 2. The numeri-
cal results are presented in Section 3, while Section 4 concludes this paper.

2 MATERIALS AND METHODS

2.1 Area of study

The data was collected from an air quality monitoring station located in Marylebone Road, 
Central London, and was provided online by the Automatic Urban and Rural Network online 
resource [14]. The location was selected because it is of urban type and has experienced sev-
eral threshold level exceedances in the past [15]. The Marylebone Road monitoring station is 
located next to a busy road comprising of three lanes of traffic in each direction and carrying 
approximately 80,000 vehicles per weekday. The cabin housing the air quality monitors is 
located on the south side of the road in a street canyon aligned on an axis of 75° to 255° in 
Central London.

2.2 Data collected

The collected data includes NO
2
, O

3
, PM

10
, barometric pressure (BP), temperature (T), wind 

speed (WS) and wind direction (WD) measured from January to December 2015. The emis-
sions variables were selected as they are highly correlated with NO

2
 [16]. On the other hand, 

the meteorological variables were selected based on their availability, e.g. least number of 
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missing values, with respect to the study period chosen. For missing data gaps less than or 
equal to 8 h, the average value of the succeeding and preceding six intervals of 1 h was used 
[17]. Otherwise, a slight modification of the hour mean method [18] was implemented, i.e. to 
replace the missing hourly value with the mean of all known hourly observations of the same 
season. Table 1 shows the main statistics describing the set of data collected within the study 
location after the imputation process.

Temporal details such as hour of the day (HoD) and month of the year (MoY) were also 
considered in this study to account for the cyclic nature of the air pollutant concentration 
levels. For model development purposes, the wind-related variables were transformed into 
two components, namely, cos( )Wx =WS WD  and sin ( )Wy WS WD= − , to account for their 
cyclic characteristic and avoid sudden jumps of values. Similarly, the time-scale components 
were transformed into sinusoidal variables. For instance, HoD was split into two variables, 
namely, cos( / )HoDx d D= 2p and cos( )Wx WS WD= , where d is the ordinal number refer-
ring to the day of the week, i.e. 1 corresponding to Sunday, and D is the total number of days. 
The variable MoY was pre-processed in a similar way.

2.3 Analysis of the collected data

As shown in Table 1, the average value of the collected hourly concentrations was high, 
e.g. 88.50 μg/m3. Additionally, the EU threshold of 200 μg/m3 was exceeded 60 times during 
2015, which breaches the legal limit of only 18 times in a year. It is apparent that models capa-
ble of providing reliable short- and long-term forecasts are needed to facilitate urban traffic 
managers in providing interventions. As depicted in Fig. 1, the collected hourly NO

2
 data exhib-

its high variability. To further quantify this observation, the ratio of the standard deviation and 
mean value of each air pollution time series, e.g. ( . / )std x , as well as the signal-to-noise ratio 
(SNR), defined in decibels as log( / .)SNR x std= 20 , were calculated. The computed ( . / )std x  
ratio of the collected NO

2
 concentration data is 0.82 which is a high value, while the SNR is 

6.76. These characteristics highlight the difficult and complex nature of the prediction task. This 

Table 1:  Descriptive statistics of the collected emissions and meteorological variables 
 collected in 2015 within the study area.

Variables Mean Min Max Standard deviation

Hourly NO
2
 level (μg/m3) 88.5 10.1 290.4 40.6

Hourly of O
3
 level (μg/m3) 15.1 0 69.8 12.4

Hourly of PM
10

 level (μg/m3) 24.1 0 117.1 12.9
Hourly temperature (°C) 9.8 −6.7 29.6 5.5
Hourly wind speed (m/s) 3.6 0.1 12.1 1.7
Hourly wind direction (°) 200.6 0 359.8 95.8
Hourly barometric pressure (mbar) 1,012 972 1,035 9.01
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Figure 1:  Plot of the first 500 samples of hourly NO
2
 values collected at Marylebone Road, 

Central London from January to December 2015.

justifies the decision of the authors to consider a wavelet decomposition technique to address 
the said issue of variability.

The effect of lags on the autocorrelation function of the collected NO
2
 data is shown in 

Fig. 2. It can be revealed that the autocorrelation scores degrade as the lag increases, reveal-
ing that the current hourly NO

2
 concentration is highly dependent to its previous values. 

However, the behaviour of the autocorrelation scores across different lags of a multiple of 
24 h indicates a cyclic pattern. This indicates the influence of seasonal parameters on the NO

2
 

concentration levels on an hourly scale. This also suggests that the lag analysis is needed to 
ensure optimal model performance.

2.4 Non-linear Autoregressive Neural Network with Multiple Exogenous Variables 
(NARX-ANN) model

NARX-ANN models are one of the most popular tools in nonlinear black-box modelling 
applications. A NARX-ANN model is described as a discrete time input-output recursive 
equation:

 ˆ ( ) ( ), , ( ), ( ), , ( ) ,y t F x t x t n y t y nx y= − … − − …



1 1  (1)

where both nx  and ny denote the maximum lags of the exogenous and endogenous variables 
x and y, respectively, and ˆ ( )y t  denotes the one-step ahead prediction of the actual value y t( ). 
The function F (.)  is represented by a feedforward ANN.

Feedforward ANNs implement a non-linear parametrised mapping from an input x to an 
output y,
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 y x w= ( )f , ,  (2)

where w  represents the weights and biases of the network, and f  is a continuous real map-
ping, commonly referred to as the activation function. ANNs consist of single input and 
output layers, and one or more hidden layers, each of which has a varying number of inter-
connected neurons. The output of each node is scaled by the weights and fed forward to the 
nodes of succeeding layer:

 y f x w bi
k

N

k k i i= +











=
∑

1
, ,  (3)

where N is the number of nodes of the preceding layer. ANNs are trained using a paired data-

set D x tm m,= { }( ) ( ) , where t  is the target value, and m Ns∈ ,1 , where Ns is the number 

of training samples, by adjusting w so as to minimise difference between the input and target 
values. The training process is carried out repeatedly according to a gradient descent algo-
rithm until a stopping criterion is met. A more detailed discussion about ANNs can be found 
in the literature (see [4], [11]). 

2.5 Wavelet-based ANN model

Discrete wavelet transformation (DWT) is a technique that decomposes a given time series 
into subseries at various scales to reveal important feature characteristics and reduce random-
ness. In more detail, DWT transforms a given time series s t( )  into a finite summation of 
shifted wavelets at different scales according to the following expansion: 

Figure 2: Autocorrelation function for NO
2
 with maximum lag at 100 h.
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 s t c t k
j k

jk
j( ) = −( )∑∑ ,Y 2  (4)

where c jk  is a set of wavelet coefficients, and Ψ( )2 j t k−  denotes the wavelet on jth scale 
shifted by k samples [19]. A J-level DWT decomposes a time series into detailed wavelet 
coefficients D tj ( )  of the proper time shifts t at various scales, j J, , , ,= …1 2  and the approxi-
mation coefficient A kJ ( ). The original time series can then be represented by the sum

 s t D t A t
i

J

i J( ) = ( ) + ( )
=
∑ .

1

 (5)

The 4-level decomposition of the first one thousand hourly observations of the collected NO
2
 

data is shown in Fig. 3.
The idea behind this scheme is to let the NARX-ANN network estimate the values of D

i
 

and A
J
 using the lagged values of the predictors. That is, at each scale n the neural network 

estimator, F
n
, is implemented to forecast the tth wavelet coefficients of the nth scale based 

Figure 3:  Wavelet decomposition of a subset of the collected NO
2
 time series data, s(t); 

D
1
–D

4
 represent the detailed coefficients, and A

4
 the coarse approximation of s(t) 

on the fifth level.
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on the set of lagged exogenous variables, M, and wavelet coefficients, as described in Eq. (6) 
and (7):

 ˆ , , , , , ,D t F M t t M t n t D t t D t m tn k i i n n( ) = −( ) … −( ) −( ) … −( )( )D D D D  (6)

 
, , , , ,Â t F M t t M t n t D t t D t m tJ k i i n n( ) = −( ) … −( ) −( ) … −( )( )+1 D D D D ,,

 (7)

where , , ,k J= …1 2 ; i Npred, , ,= …1 2 ; Npred  denotes the number of predictors utilised by the 
model; and m and n is the number of lags for the target and exogenous variables, respectively. 
Finally, the original form of the predicted NO

2
 concentration can be retrieved using the fol-

lowing expression:

 ˆ ˆ ˆ .s t D t A t
i

J

i J( ) = ( ) + ( )
=
∑

1
 (8)

In this paper, the Daubechies wavelets Db5 [20] were chosen to implement the decomposi-
tion process as this provided the lowest variability of the signals at each level after a series 

of trial-and-error procedure missing period. Additionally, the selection for the value of J is 

usually based on the ratio /std ( ) std ( )A sj , e.g. the standard deviation of A
J
 must be sub-

stantially smaller than that of s t( ) . However, choosing a larger value of J also increases 
the number of terms in Eq. (5), thus accumulating more approximation errors when Eq. (6) 
and (7) are carried out via NARX-ANN [21]. As such, J was chosen to be 5. The general 
modelling scheme of the wavelet-based approach is outlined in Fig. 4. Various scales of the 
original time series of NO

2
 levels were initially generated via DWT. The set of exogenous 

variables was then combined with the wavelet coefficients, e.g. D
i
, for i , , , ,= 1 2 3 4 5  and A

5
 

to form the final set of predictors which are then fed to (J + 1) NARX-ANN models. Lastly, 
the predicted values of wavelet coefficients at various time scales, e.g. D̂i  and ÂJ , were then 
reconstructed using Eq. (8).

Figure 4: General modelling scheme of the wavelet-based NARX-ANN approach.
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2.5 Model development

All collected data have been initially normalised using the max-min normalisation scheme to 
ensure that all values are in the same range [11]. The data were then split into three sets of which 
70%, 15% and 15% of the total 8,760 hourly samples of each variable were allocated for the 
training, validation and testing sets, respectively. The partitioning was carried out randomly 
to ensure that every element of the subset of data represents the entire dataset. Additionally, 
the first four lags of the exogenous variables, e.g. x t x t x t x t−( ) −( ) −( ) −( )( )1 2 3 4, , , , and 
the endogenous variable, e.g. y t y t y t y t−( ) −( ) −( ) −( )( )1 2 3 4, , , , are defined as inputs, 
and y t( )  as the target, see Eq. (1).

Logistic sigmoid and linear activation functions were utilised in the hidden and output 
layers, respectively. Furthermore, only one hidden layer was employed in the network 
as it has been found to be sufficient in approximating any smooth measurable map-
ping between input and output variables  [22]. The network weights and biases were 
initialised using the Nguyen-Widrow algorithm. Finally, the optimal number of hidden 
neurons was determined by a trial-and-error procedure which involves training multiple 
models across different prediction horizons and predictors via the Levenberg-Marquardt 
backpropagation algorithm. The process was repeated ten times to account for the sen-
sitivity of the initial weights per run. The number of hidden neuron associated with the 
configuration that yielded the least average mean absolute error of the validation set was 
then selected.

In summary, two models were built in the study, namely, the plain NARX-ANN and the 
hybrid wavelet-based NARX-ANN approaches. Additionally, a variant of the models was 
trained for each prediction horizon, e.g. 1-h and 24-h ahead. Lastly, different subsets of the 
predictors were utilised to train the said models. Specifically, a model was developed using 
variables of only emissions, weather, time-scale and their combinations. To avoid bias, the 
models were run 100 times to account for the random initial values of the weights each time 
the model is run. The average of the results was then selected as the final outputs. Finally, the 
results of each model were assessed using root mean square error (RMSE), fractional bias 
(FB) and coefficient of determination (r2) between the observed and predicted values. All 
algorithms were written and implemented in MATLAB R2018b software [23].

3 RESULTS AND DISCUSSION
Table 2 provides the performance of the developed models.

In the case of 1-h ahead forecasting of NO
2
, the best results were obtained by the wavelet-

based NARX-ANN model trained by all predictors, with lowest RMSE score of 13.023 µg/m3. 
This highlights the importance of emissions, weather and time-scale predictors in approximat-
ing NO

2
 using data-driven models. The model can also explain more than 95% of the variance 

of the actual NO
2
 data, improving the performance of the plain NARX-ANN models by up 

to 6%. The wavelet-based models also have lesser tendencies in underestimating or overesti-
mating the actual data in general. Fig. 5 shows the plots of the observed NO

2
 observations for 

the last 100 h the test period (year 2015) and the predicted NO
2
 values of the best performing 

plain and hybrid NARX models. It can be seen in Fig. 5(a) that the 1-h ahead estimates of 
the wavelet-based model coincide very well with the values of the actual data. This observa-
tion is in accordance with the distribution of forecasting error histograms shown in Fig. 6(a). 
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Table 2: The performance results of different models for hourly prediction of NO
2
.

Exogenous Predictors ∆t Model type

NARX-ANN Wavelet-based NARX-ANN

RMSE FB r2 RMSE FB r2

O
3
, PM

10
1 18.592 0.0221 0.889 13.591 0.0089 0.951

T, BP, WS, WD 1 18.898 0.0298 0.890 14.044 0.0091 0.943
HoD, MoY 1 17.276 0.0189 0.907 16.100 −0.0109 0.932
All predictors 1 17.029 0.0102 0.913 13.023 0.0083 0.955
O

3
, PM

10
24 35.406 0.1056 0.568 32.351 0.1221 0.678

T, BP, WS, WD 24 36.322 0.1401 0.594 31.701 0.1032 0.680
HoD, MoY 24 31.771 0.1031 0.658 28.622 0.0970 0.733
All predictors 24 31.702 0.0624 0.675 28.043 0.0454 0.756

Figure 5:  Comparison of the observed and predicted (a) 1-h ahead and (b) 24-h ahead values 
of NO2 using NARX-ANN (predPLAIN) and wavelet-based NARX-ANN (pred-
HYBRID) models.

However, it is evident that the models fail to accurately approximate extreme values. This 
may be explained by the relatively fewer available extreme values in the training data set [9]. 
It is also worth noting that the wavelet-based model trained only using O

3
 and PM

10
 data also 

provided significantly accurate results, suggesting that emissions data can be enough to train 
models in locations where meteorological variables are not available or missing. The worst 
performance was exhibited by the model trained only by monthly and hourly cycles. Among 
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the benchmark models, the best results were obtained by the model that also included all pre-
dictors, while the worst one was achieved by only utilising emissions data.

In the case of 24-h ahead forecasting of NO
2
, the best results were still obtained by the 

wavelet-based model that utilised all predictors, reducing the RMSE and FB scores of its 
counterpart plain models by 3.7 µg/m3 and 0.017, respectively. Furthermore, it is apparent 
that the accuracy of all model results declined as the prediction horizon jumped from 1 to 
24 h. This is consistent with the results of previous case studies and almost all forms of fore-
casting [24], [25]. Nonetheless, the results of the best performing wavelet-based model was 
able to explain approximately 76% of the variability of the observed data, which is 17% more 
accurate than those attained by the worst-performing benchmarks model. Consistent with 
quantitative results in Table 2, both plain and wavelet-based NARX-ANN models encoun-
tered difficulties in following the hourly trends of the actual NO

2
 values 24-h in advance, see 

Fig. 5(b). It can also be depicted in Fig. 6(a) that both models suffered severe magnitudes 
of error for the 24-h prediction task. The models tend to underestimate or overestimate the 
extreme concentration levels in many occasions. Overall, the results indicate that the wavelet 
decomposition process can significantly improve the performance of the plain NARX-ANN 
models.

4 CONCLUSIONS
In this paper, hybrid models based on wavelet decomposition and NARX-ANNs were devel-
oped to provide 1-h and 24-h ahead forecasts of NO

2
 concentration levels. The models were 

trained using hourly emissions, meteorological and time-scale variables collected from a 
busy roadside location in Central London. Plain NARX-ANN models were built to serve as 
benchmark models. The overall results highlight the superior performance of the wavelet-
based NARX-ANN models when compared to those from the plain NARX-ANN models. 
The results of this study confirms the effectiveness of the wavelet decomposition method 
in reducing the variability of the NO

2
 time series, thus improving the performance of the 

Figure 6:  Error histograms of the (a) 1-h ahead and (b) 24-h ahead forecasting results us-
ing NARX-ANN (predPLAIN) and wavelet-based NARX-ANN (predHYBRID) 
models.
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benchmark models. The results also suggest that the inclusion of emissions and weather 
variables is beneficial in developing accurate data-driven models, although the models using 
only time-scale data as exogenous variables also yield results with a relatively acceptable 
level of accuracy. Additionally, the results reveal that the hybrid models can generate fairly 
accurate 24-h forecasts of NO

2
. In conclusion, this study demonstrates the high potential of 

wavelet-based NARX-ANN models as robust and parsimonious tools for real-world air qual-
ity management and forecasting applications.
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