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ABSTRACT
The World Health Organization (WHO) estimates that air pollution kills around 6.5 million people 
around the world every year. The European Environment Agency, in turn, points out that about 50,000 
people die annually in Poland due to this. PM10 pollution arises in the form of smog (smoke and fog) 
and is an unnatural phenomenon created by adverse weather conditions and human activity. The aim of 
this article is to assess the possibilities of tasking modern neural networks to predict PM10 air pollution 
levels in the following hours of the subsequent day. In evaluating the prediction task, several types of 
error are considered, and machine learning algorithms and structures are utilized as learning models. 
Of note, the algorithm selected for stochastic optimization is a form of convolutional neural networking 
and deep learning neural networking that is used in machine learning when considering Big Data issues. 
The obtained results were then analysed and compared with other methods of prediction. As a result of 
this research, the proposed convergent neural network could be used effectively as a tool for calculating 
detailed air quality forecasts for the subsequent 24-h period. 
Keywords: air pollution prediction (forecasting), big data, convolutional neural networks, machine 
learning, regression task, neural network, particulate matters.

1 INTRODUCTION
PM10 is a mixture of suspended particles, the diameters of which do not exceed 10 µg. This 
dust is harmful due to the content of such elements as benzopyrenes, furans, dioxins and 
carcinogenic heavy metals. The norm of average daily concentration of this dust is 50 µg/
m3, and the annual safe set limit is 20 µg/m3, according to the WHO organization. It is worth 
noting, however, that information about exceeded norms is announced when the daily PM10 
concentration is 200 µg/m3 – one can see how often we think that the air is fine, while it is 
very polluted, but the alarm level has not yet been reached. 

Human health depends, among other things, on the purity of the air breathed in. Unfor-
tunately, Poland is not a country that could boast of excellent air quality. This is evidenced 
by the WHO report, which shows that among 50 cities and towns of the EU with the highest 
level of pollution, the report lists as many as 33 from Poland. 

Measurement, modelling and prediction of concentrations of air suspended particulates 
are very important challenges, especially in areas where exceedance of standards is very 
common. Therefore, as part of this study, it was decided to develop a machine-learning model 
based on deep learning of neural structures, which allows prediction of PM10 dust concentra-
tion covering the approaching 24 h – hour by hour. 

Deep learning is a specific subfield of machine learning. It uses a new approach to learn-
ing from data, and places emphasis on teaching subsequent layers of neurons of more and 
more significant representations. The term ‘deep’ refers to the many layers between the input 
data and the obtained result. This allows the algorithm to use numerous processing possibili-
ties – both linear and non-linear. The convolutional neural network (CNN) employed in the 
presented research is a form of multilayer neural networking; its main purpose is to recognize 
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different patterns, especially on images. This network consists of an input layer, an output 
layer and many hidden layers. In the hidden layers, convolutional and pooling operations are 
performed. 

In order to overcome the PM10 forecasting problem, the present paper will present models 
of PM10 air pollution prediction that have been based on artificial neural network proce-
dures, in particular, on the most modern technique – ‘convolutional neural networking’. The 
evaluation of learning process for the investigated models was mostly based upon the mean 
square error criterion, however, during the model validation, a number of other methods of 
quantitative evaluation were taken into account. The presented model of pollution prediction 
has been verified by way of real weather and air pollution data taken from the Airly sensor 
station network (Fig. 1). 

The distributed network of Airly measurement devices enables access to current and 
archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5 and 
PM10, CAQI levels, atmospheric pressure and air humidity (Fig. 2). Currently (May 2019), 
the dense network of sensors is composed of 2,458 stations. This degree of coverage puts 
Airly into the leading reportage position in Poland and makes it one of the dominant provid-
ers in the world. Outside Poland, the sensor network includes several test locations in Europe, 
such as that of Spitzbergen. Indeed, the number of measuring sensors located in Europe is 

Figure 1: The Airly sensor network in Poland.
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growing dynamically (outside of Poland), e.g. in Austria, Germany, Great Britain, Greece, 
Ireland, Italy, North Macedonia, Romania and Spain.

The problem of modelling and predicting air pollution levels due to PMx particles is a very 
important but difficult task. The impressive number of scientific articles that deal with this 
issue evidences this. What is more, this issue is completely different for various geographic 
and environmental conditions, even though it would seem that it can be easily determined. 
When reviewing literature related to this problem, it is possible to distinguish several groups 
of machine learning algorithms that allow for its solution, e.g. Linear Regression [1], Fuzzy 
Logic [2], Neural Network Procedures [3], Neural Networks with ARMA models [4], Deep 
Neural Networks [5,6] and Autoencoders [7]. 

Interestingly, CNN type neural networks [8] are more often applied in information process-
ing. This type of neural network was predefined to issues related to image analysis [9]-[11] 
and video sequences [12], and classical algorithms using shallow type of neural networks 
were employed to create solutions to prediction issues [4]. Recently, deep neural network 
application, particularly CNN, has expanded into the domain of analysis and modelling of 
time series [13]-[15]. 

The paper is organized as follows. In Section 2, convolutional neural network models are 
introduced and investigated. In Section 3, the real data set used for the presented numerical 
experiments is set out. Moreover, procedures for the learning neural model Adaptive Moment 
Estimation algorithm [16] are advanced. In Section 4, results of numerical verification are 

Figure 2:  The sensor locations near Krakow and the displayed left information panel seen 
on their website.
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presented and discussed. Finally, Section 5 contains concluding remarks and plans for future 
investigations. 

This work is a continuation of the research presented in [1].

2 INVESTIGATED MODELS
Deep learning is a subcategory of machine learning, the field of computer programming sci-
ence that enables a device to learn from data. Deep learning describes a set of techniques for 
teaching the brain of the device. These are models of neural networks (deep networks) built 
of multiple layers that are inspired by the activities performed by the human brain.

Deep networks are based on a hierarchical model (Fig. 3); the output of the lower layer is 
the entry of the next one. The lower layers represent the simplest characteristics of the input 
signal, the higher layers generate more general data features based on the previous layers. 
The deeper layers extract the basic information, while the higher correspond to the applica-
tion of this information to the modelled problem. The main feature of deep networks that 
distinguishes these from typical neural networks is the number of layers. A deep network 
can have dozens or even hundreds of hidden layers, while a typical network usually has up to 
three hidden layers. Skilful application of deep learning in data processing has revolutionized 
this dynamically developing machine learning field.

The advantage is the use of models of CNN convolution. The multiplication of the weight 
matrix and the input signal of traditional ANN are replaced by the convolution – the console 
layer. The application of convolution significantly limits the number of parameters by sharing 
weights and using filters. In regular networks using fully connected layers, it is necessary to 
assign at least several weights to each input element. Unfortunately, this solution does not 
scale well for large data sets; the number of necessary neurons explodes when increasing the 
size of the considered data. Using of CNN increases the size of the input without the need 
to expand the architecture. Thanks to the significant reduction in the number of parameters 
compared to previous solutions, it is possible to run such a network on any device; hence, the 
networks are universal and have a large spectrum of applications. 

3 LEARNING PROCEDURES AND DATA SET
The proposed prediction algorithm, based on CNN, is learned using the adaptive moment 
estimation algorithm (ADAM). It is a supervised learning algorithm, i.e. a data set consist-
ing of pairs in which an input pattern and a correct model response are to be provided. The 

Figure 3:  Hierarchical structure of convolutional neural network with two hidden and two 
fully connected layers.
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algorithm learns to match the output to the actual value based on the training data. This is a 
method that allows modification of weights in a network with a layered architecture, in all its 
layers. Data is usually divided into three sets: learning, testing and validation. The largest, the 
learning set, is used in the network teaching process. A test set is then employed during learn-
ing to assess the quality of the classification. Finally, a validation set is applied, albeit less 
frequently than the test set, to determine the quality of the model under real conditions. The 
undoubted advantage of ADAM is the estimate of the first and second moment of gradients, 
i.e. the mean and variance, respectively [16]. 

In our study, all time series simulations were used, including hourly average pollution 
measurements, as well as weather condition, both of which were obtained from Airly sen-
sors. The measurements on which the numerical experiments are based were for a period of 
about 1 year. Each measurement (at time t) includes the dust concentration PM10 [μg/m3], 
temperature [°C] and average wind force [m/s], which were marked as xt

10
, xtemp

t  and xw
t , 

respectively.
The data set subject to numerical calculations contains 5,969 hourly measurements. Due to 

the specificity of the process of preparing the model in the Machine Learning domain, these 
data were divided into two separate sets. The first is a training set and is used to build a model 
that includes the refinement of its particular parameters. The second is the test set, the task of 
which is to evaluate the quality of the finished model. In the present case, the data is divided 
into 5,242 elements that are designated towards the training data (xlearn), with the remaining 
727 being the test data (xtest). In addition, it should be emphasized that the data is discontinu-
ous. This is a consequence of the use of data from real measuring sensors, and these disconti-
nuities result from minor faults, service breaks or breakdowns of external computer networks 
transmitting data to the servers aggregating them.

In the present research, the historical data described above, as well as the prediction data 
associated with the meteorological measurements used were employed as inputs to the pre-
diction model. The second group included the temperature and wind strength received from 
the DarkSky portal. Thus, the input vector to the predictor was formulated in the form:

 
x x x x x x xtemp temp w w= … … …{ }− − − −

PM PM10
25

10
1 25 24 25 24, , , , , , .  (1)

The output from the prediction task is a PM10 concentration forecast for the next 24 h. This 
is presented in the form:

 
y y y= …{ }PM PM10

1
10

24
, , .

 (2)

Network overtraining is a situation when the network learns to classify the examples per-
fectly from the training set, but the network loses the ability to generalize, i.e. the network’s 
ability to correctly classify the data on which the network was not trained upon. Overtrain-
ing may come about due to the use of too many parameters in comparison to the complexity 
of the problem. The overtrained model can also classify on the basis of insignificant details 
within the data, e.g. the background image scheme. A drop in the accuracy of tests upon the 
validation set may indicate overtraining as learning progresses, or more directly by generat-
ing lower accuracy values for the test set relative to the training set. In order to eliminate 
this unfavourable phenomenon, many solutions can be applied, e.g. momentum, dropout, 
regularization L1 and L2, batch normalization, gradient clipping, data augmentation. All the 
aforementioned are dedicated to neural algorithms.
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In this work, standardization of input data and procedure dropout were applied. This algo-
rithm relies on a technique where randomly selected neurons are ignored during training. 
This task is a very important element that allows dispersing the tasks performed by dropped-
out neurons on neighbouring cells. In this manner, the neuron weights that are the carrier 
of knowledge are tuned to specific features related to the issues studied. What is more, this 
method ensures that neurons do not specialize in the recognition of learning data, that is, they 
do not undergo a process of overfitting.

In the learning process, the basic concept is the measure of the quality of the solution. 
This is the foundation for calculating the gradient that affects the direction of the change of 
weights in subsequent iterations of the training procedure. In the present case, due to the con-
tinuous nature of the exit, the mean square error is applied. This can be expressed as:

 MSE
P

yy
i

P

= −( )
=
∑1

2

1

i i
t t

,
 (3)

where yl
τ is n predictions of investigated forecast (for τ time), and yi

τ
 consists of P observed 

values of the predicted variable. However, for very fast variable data such as hourly concen-
trations of PM10, a much better formula for analytical purposes is:
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where std yt( ) � and std yt( ) are the standard deviations of observed value and the investi-

gated forecast, respectively, and Cov y yt t, ( ) denotes the covariance coefficient. 

Herein, simultaneously, both types of measures have the property of forecast compliance. 
This can be defined as the enabling aggregation and holding assurance of minimization of error 
at each level of the hierarchy. The above corresponds directly to the selection of the forecast 
assessment measures, as obtaining the conditional value expected for the forecasting result is 
possible only by minimizing square errors, such as, among others, adopted MSE and R2.

4 EMPIRICAL STUDY
As a part of the research on the prediction of air pollution in the form of PM10 dust, several 
hundred CNN were used. The obtained results were dependent on many factors related to 
this type of neural network. The research focused on the topological structure itself, such as 
choosing the learning algorithm, the length of the training process, the value of the learning 
rate parameter and the dropout procedure. This section shows the results from the best net-
work that was obtained. All graphs below were generated only for test data. 

For research purposes, several tens convolution neural networks were synthesized. For 
each of these, the possibilities of prediction for each following hour from the first to the 
24th of the following day were separately examined. Figure 4 shows the correlation graphs 
for the PM10 concentration forecast for the first, second, sixth, twelfth and 24-h intervals, 
respectively. The horizontal axis shows the forecast value, while the real value is on the ver-
tical axis. In the ideal case, i.e. for full compliance of the forecast with real data, all points 
would be on the green line. Therefore, it can easily be concluded that in the presented data, 
the envelope width indicates a prediction error.
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The individual charts show that the smallest error was achieved for the first hours of pre-
diction, and this error increased in the subsequent intervals. Another observation is that the 
smallest error is for minute concentrations of PM10. For the range from 0 to 50, this error 
is practically negligible, while for larger values, prediction values significantly differ to the 
real. A further observation is the tendency to underestimate the forecast rather than to over-
estimate.

Figure 4:  Results of correlation based on the testing set for predictor built upon CNN for the 
1st, 2nd, 6th, 12th, 18th and 24th hour of forecast.
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This effect is visible in the bottom row of results – through the occurrence of a specific 
hump in the points over the green line that indicates the ideal prediction. This hump intro-
duces asymmetries in the envelopes of the individual charts. The outlier elements form 
another evident grouping and go beyond the envelope of consistency. Herein, the prediction 
value is completely different from the actual data. From the presented figures, it is safe to say 
that the number of these points is about 1 part-per-thousand of the data considered.

The above facts are also indicated in Fig. 5, which shows the temporal dependence for the 
1st, 6th, 12th and 24th forecast hour, and which is where the compression within the linear 
model is dissipated. In this group of figures, 727 time measurements for particular prediction 
times are shown, with the red line being real data, the green being a prediction being based 
on a linear model and the blue prediction being based on the CNN. In the cases discussed, the 
first hour of prediction results coincide with real data. However, for the following hours, the 
prediction error begins increasing. Indeed, by the 6th prediction hour, a deviation between 
the data is evident. At the same time, the worst prediction barely copes with sudden jumps 
in PM10 concentration, as noticeable around the 300th hour of the test. Another example of 
poor coping with such abnormalities is a single peak around the 700th hour of the test. 

Compared to the prediction algorithm based on the linear regression method, for the more 
distant predictions, the CNN-based procedure is much better at changing the temporal char-
acter of the time courses. 

The relationship between the three models is demonstrated in Figs. 6 and 7. The first pre-
diction – the CNN Model (red line) plots the results obtained in the previous part of paper. 
The next, the CNN Model with time (yellow line), adds time coordinates. The last line in 
green is a plot of the linear regression that the prediction is based on (1). 

Figure 6 shows the change in the Pearson correlation coefficient depending on the time 
of prediction. Quite a clear conclusion can be derived from the decrease in this parameter 
as the PM10 prediction time increases. In this graph, it is noticeable that both CNN models 
are close to each other, especially at the beginning of prediction, i.e. up to 5 h; in subsequent 
hours, however, the distance in this relationship increases, as the CNN with time model is 
characterized by results that are inferior. The linear model behaves differently, it is much 
worse than the previous two (especially for the later hours of prediction). This is the most 
interesting and useful result of our study.

Figure 7 reveals the dependence of the MSE error on the subsequent prediction hours. In 
this figure, the colour convention is the same as in the previous case. For the criterion of the 
quality of prediction, which is the MSE error, it is clearly evident that the individual algo-
rithms are at the same level only for the first 2 h. Afterwards, the CNN model is distinctly 
dominant while that of the CNN with time model is of less dominant and the Linear Model is 
even less so. At the beginning of the simulation, in the results for the Linear Model, the nature 
of the changes is similar to the CNN models, but with time, saturation comes about, albeit 
with less and less deceleration of the error. It is worth emphasizing that for the last hours of 
simulation, the models based on the CNN curve their MSE error characteristics, which means 
that for these cases, the forecast error slightly decreases. The reason for this may be lie in 
the cyclical nature of changes related to the periodicity of pollutants, i.e. people’s habits, car 
traffic, factory work hours, etc. Interestingly, classical methods based on linear regression do 
not uncover such nuances in such a noteworthy manner.

5 CONCLUSIONS
This paper presents a study of predicting the level of air pollution concentration through the 
use of CNN. The purpose of the prediction was to indicate the condensation value of PM10 
particulates for the next 24-h time interval. Many neural CNN have been synthesized for this 
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Figure 5:  Testing set PM10 results in which the CNN predictor was applied for the 1st, 6th, 
12th and 24th forecast hour, as compared with the linear model.
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Figure 6:  Comparison of PM10 results: the CNN model with and without time, as compared 
with the linear model, taking into account the R2 measure.

Figure 7:  Comparison of PM10 results: the CNN model with and without time, as compared 
with the linear model, taking into account the MSE measure.

task, but due to the limited length of the articles, only the best solution was presented. For 
learning and testing the neural network, real data from the Airly sensor station located in one 
of the villages near Krakow were used. On the basis of the numerical analysis of the obtained 
results, our results indicate the positive qualities of utilizing neural network applications for 
the PM10 prediction task. In the comparative analysis carried out between the CNN models, 
CNN with time and the Linear Model, the CNN-based models showed superiority. 
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In subsequent studies, it will be prudent to scale the obtained results by applying several 
best neural networks to a larger scale of data, in particular to that derived from more measure-
ment stations. In addition, the use of a heterogeneous model is proposed. This will include 
numerous neural networks of various types, from classical linear networks [1], through deep 
learning [6] to those of the probabilistic type [17,18], as the application of such a hybrid 
predictive model will ease the task of analysing the sensitivity of individual elements of the 
input vector [17,19]. 
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